Eurocode 3 for Dummies The Opportunities and Traps

a brief guide on element design to EC3

Tim McCarthy
Email tim.mccarthy@umist.ac.uk
Manchester Centre for Civil \& Construction Engineering

Slides available on the web

http://www2.umist.ac.uk/construction/staff/ mccarthy/index.htm

- Follow the link from my home page
-From 21 March 2003

Overview

- Eurocode 3
- Current status
- Coverage
- Pitfalls
- Major and minor differences with BS5950
- Element Design
- Beams, Struts

Capacity comparisons

EC3 Current Status

UDC
Descriptors:
English version
Eurocode 3 : Design of steel structures
Part 1-1: General structural rules and rules for buildings

Calcul des structures en acier

Partie 1-1: Règles générales et régles pour ingènierie du bâtiment

Bemessung und Konstruktion von Stahlbauten

Teil 1-1: Allgemeine Bemessungsregeln und
Teil 1-1: Allgemeine Bemessungsregel
Regeln für Hallen und Geschoßbauten

Stage 34 draft

Amendments sent prior to the CEN TC 250/SC 3 meeting in Vienna are highlighted by yellow colour.
Amendments made during the CEN TC 250 / SC 3 meeting in Vienna are highlighted by light blue colour.

This document is a merger of the stage 34 drafts prEN 1993-1-1 and prEN 1993-3 both dated 1 May 2002

E-SCl Name Marmh 2 On 々

Eurocode News

The timetable for the final run-up to the publication and implementation of EN1993 (EC3) is now fixed. The final drafts of the five Parts of EC3 needed for building design are now agreed. So the mandatory use of these codes is now in sight. What is the SCl doing to help

Eurocode terminilogy

EN - EuroNorm

- mandatory standard
-ENV - EuroNorm Voluntaire
- You can use it if you wish

DD - Draft for development
DC - Draft for public comment
prEN

- Pre-EuroNorm between DD and EN

EC3 Current Published Status

DD ENV 1993-1-1:1992 Eurocode 3. Design of steel structures. General rules and rules for buildings (together with United Kingdom National Application Document)
DD ENV 1993-1-2:2001 Eurocode 3. Design of steel structures. General rules. Structural fire design (together with United Kingdom National Application Document)
DD ENV 1993-1-3:2001 Eurocode 3. Design of steel structures. General rules. Supplementary rules for cold formed thin gauge members and sheeting

Other EC's Published Status

prEN 1994-1-1:2002 Design of composite steel and concrete structures. Part 1.1 General rules and rules for buildings. Stage 49 Examination Document
DD ENV 1998-3:1997 Eurocode 8: Design provisions for earthquake resistance of structures. Towers, masts and chimneys

Potential pitfalls

- Terminology
- Restricted vocabulary
- Change in symbols
- More logical symbol name conventions
- Lots of subscripts
- Changes in values
- Young's Modulus etc
- Multiple documents
- Need to consult more than one part

Terminology

BS5950
Force
Capacity

- M_{c}

Design strength

- p_{y}

Dead load

- Live load
- Wind load

EC3

- Action

Resistance

- $M_{c, R d}$
- Yield strength
- f_{y}

Permanent load

- Variable load
- Another variable load

Terminal...ogy

BS5950 in wonderland EC3
Words evolved over time

- Inconsistent at times
- No link with concrete structural codes

Symbols

	BS5950	Eurocode
Elastic Modulus	Z	$\mathrm{W}_{\mathbf{d}}$
Plastic Modulus	S	$\mathrm{W}_{\mathbf{p l}}$
Radius of Gyration	r	i
Torsion constant	J	I_{t}
Warping constant	H	I_{w}

$!$

Changes in Values

- Young's Modulus
- BS - 205000 N/mm²
- EC - $210000 \mathrm{~N} / \mathrm{mm}^{2}$
- Shear modulus
- BS - $79000 \mathrm{~N} / \mathrm{mm}^{2}$
- EC - $81000 \mathrm{~N} / \mathrm{mm}^{2}$

Changes in load factors

- BS 1.4Gk + 1.6 Qk
- EC 1.35Gk + 1.5 Qk
- Many extra load combinations in EC
- Main variable action
- Secondary variable action

Axes redefined in Eurocod

Major axis is $y-y$

- Vertical axis is z-z
$\bullet X$ direction is along the member
- This is consistent with most FE and Frame analysis software

EC3 Definitions

A BS Section classification

$$
\varepsilon=\left(275 / p_{y}\right)^{0.5}
$$

\triangle prEN1993 Classification

- Different outstand - Different ε

$$
\varepsilon=\left(235 / f_{y}\right)^{0.5}
$$

Multiple documents

- The DD ENV 1993:1-1 contained all the information in one 300 page document. It also contained the National Application Document
prEN1993-1-1 Contains member and frame design but omits fasteners
- prEN1993 must be read in conjunction with the UK National Annex

Element Design

Beams

- Moment capacity/resistance
- Shear
- Deflections

Compression members

Moment Resistance

BS5950

- Class 1 and 2
- $M_{c}=p_{y} S$

Class 3 semi-compact

- $M_{c}=p_{\mathrm{y}} Z$ or
$M_{c}=p_{y} S_{\text {eff }}$
Class 4 slender
- $M_{c}=p_{y} Z_{\text {eff }}$
- Low shear
- $F_{v}<60 \% P_{v}$

EC3
Class 1 and 2

- $\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{f}_{\mathrm{y}} \mathrm{W}_{\mathrm{pl}} / \gamma_{\mathrm{M} 1}$
- $\gamma_{M 1}=1.05$ in UK
- Class 3
- $\mathrm{M}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{f}_{\mathrm{y}} \mathrm{W}_{\mathrm{e}, \text { min }} / \gamma_{\mathrm{M} 1}$

Class 4

- $M_{c, R d}=f_{y} W_{\text {eff,min }} / \gamma_{M 1}$
- Low shear
- $\mathrm{V}_{\mathrm{Ed}}<50 \% \mathrm{~V}_{\text {piRd }}$

Shear Resistance

$\begin{aligned} & \text { BS5950 } \\ & \text { - } P_{v}=0.6 p_{y} A_{v} \\ & \text { - Shear area } \\ & \text { - } A_{v}=t D \end{aligned}$ - Shear buckling if - $\mathrm{d} / \mathrm{t}>70 \varepsilon$	- $\mathrm{V}_{\mathrm{pl}, \mathrm{Rd}}=\mathrm{A}_{\mathrm{v}}\left(\mathrm{f}_{\mathrm{y}} / \sqrt{ } 3\right) / \gamma_{\mathrm{M}_{1}^{2}}^{T}$ - Shear area - $A_{v}=A-2 b t_{f}+\left(t_{w}+2 r\right) t_{f}$ - Approx $=1.04 \mathrm{tD}$ - Shear buckling if - $\mathrm{h}_{\mathrm{w}} / \mathrm{t}_{\mathrm{w}}>72 \varepsilon$

Deflections

BS5950

Serviceability LS

- Imposed load only
- Span/360-brittle
- Span/200 - generally

EC3? EN1990

Serviceability LS

- Permanent action, δ_{1}
- Variable action, δ_{2}
- Pre-camber, δ_{0}
- $\delta_{\max }<\mathrm{L} / 250$
- $\delta_{2}<L / 350$ brittle
- $\delta_{2}<L / 300$ generally

Deflections

Serviceability LS

- Imposed load only
- Span/360-brittle
- Span/200 - generally

EC3? EN1990 Serviceability LS

- Permanent action, δ_{1}
- Variable action, δ_{2}
- Pre-camber, δ_{0}
- $\delta_{\max }<\mathrm{L} / 250$
- $\delta_{2}<L / 350$ brittle
- $\delta_{2}<$ L / 300 generally

Compression Members

- $\mathrm{P}_{\mathrm{c}}=\mathrm{Ag} \mathrm{p}_{\mathrm{c}}$ from

Tables 23 and 24

- p_{c} is a function of λ
- BS5950 requires a large number of tables
- $N_{b, R d}=\chi A f_{y} / \gamma_{M 1}$
$-\chi$ is a reduction factor
- χ depends on
- $\bar{?}$ non-dimensional slenderness
- Perry-Robertson approach

Compression members

Figure 6.3: Buckling curves

Example

- UC 203x203x60 of grade S275 is axially loaded and pinned at each end of its 6 m length.
- $\mathrm{A}=76.4 \mathrm{~cm}^{2}$, flange thickness, $\mathrm{tf}=14.2 \mathrm{~mm}$, radius of gyration about minor axis, $\mathrm{i}_{\mathrm{zz}}=5.2 \mathrm{~cm}$, depth, $\mathrm{h}=$ 209.6mm, width $b=205.8 \mathrm{~h} / \mathrm{b}=1.01 \Rightarrow \mathrm{H}$ section
- Table 3.1: $\mathrm{t}_{\mathrm{f}}=14.2 \mathrm{~mm}<40 \mathrm{~mm}$ therefore $\mathrm{fy}=275 \mathrm{~N} / \mathrm{mm}^{2}$ for S275 grade
- $\mathrm{E}=210000 \mathrm{~N} / \mathrm{mm}^{2}$
- Slenderness $-\lambda z z=600 / 5.2=115<180$ OK
- $\beta \mathrm{a}=1.0$, implies $\lambda_{1}=\pi(\mathrm{E} / \mathrm{fy})^{0.5}=86.8$
$\varphi\left(\lambda_{z z} / \lambda_{1}\right) \beta \mathrm{a}^{0.5}=115 / 86.8=1.324$

Figure 6.3: Buckling curves

Example

- UC 203x203x60 of grade S275 is axially loaded and pinned at each end of its 6 m length.
- Figure 6.3 factor, $\chi=0.38$
- $\mathrm{N}_{\text {bRd }}=0.38^{*} 1.0^{*} 76.4^{*} 10^{2 *} 275 / 1.05$
$=760 \mathrm{kN}$

$203 \times 203 \times 86$	P_{cx}	2920	2920	2870	2810	2750	2690	2610	2450	2260	2050
	BS5950 - 786kN						2030	1840	1460	1160	921
$203 \times 203 \times 71$							2200	2140	2010	1850	1670
	cy	2380	2250	2110	1970	1820		1500	1190	941	748
$203 \times 203 \times 60$	P_{cx}	2100	2100	2060	2020	1970	1920	1860		$1030 \sim 1420$	
	P_{cy}	2080	1960	1840	1710	1570	1430	1280	1010	786	622
$203 \times 203 \times 52$	$\mathrm{P}_{\text {ex }}$	1820	1820	1790	1750	1710	1660	1620	1510	370	1220
	P_{ov}	1800	1700	1590	1480	1360	1230	1110	868	678	536

But

EC loads are typically 5% lower than BS - Scaling the capacity by this figure gives:

EC3 $=760 / 0.95=800 \mathrm{kN}$

- EC3 stronger than BS at 786 kN

LTB BS5950:2000

- $M_{\mathrm{x}} \leq M_{\mathrm{b}} / \mathrm{m}_{\mathrm{LT}} \quad$ and $\quad M_{\mathrm{x}} \leq M_{\mathrm{cx}}$

- $M_{b}=p_{\mathrm{b}} \times$ modulus
$-p_{b}$ from $\lambda_{L T}$
- $\lambda_{L T}=u v \lambda \sqrt{ } \beta_{W}$
-Class $1 \& 2: \beta_{w}=1.0$
Class 1 \& 2: $M \mathrm{Mb}=p_{\mathrm{b}} S_{\mathrm{x}}$

LTB BS5950:2000

$$
\bullet M_{\mathrm{x}} \leq M_{\mathrm{b}} / \mathrm{m}_{\mathrm{LT}} \quad \text { and } \quad M_{\mathrm{x}} \leq M_{\mathrm{cx}}
$$

- $M_{\mathrm{b}}=p_{\mathrm{b}} \times$ modulus
- p_{b} from λ_{LT}
- $\lambda_{L T}=u v \lambda \sqrt{ } B_{W}$
$\varphi \mathrm{Mb}=p_{\mathrm{b}} S_{\mathrm{x}}$

BS 5959 Table $18 \mathrm{~m}_{\text {LT }}$

BS5950 - $\mathrm{m}_{\text {LT }}$ for UDL

p_{b} from Table 16

$\lambda_{\text {LT }}$	Steel grade and design strength $p_{\mathbf{y}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$										
	S 275					S 355					
	235	245	255	265	275	315	325	335	345	355	400
25	235	245	255	265	275	315	325	335	345	355	400
30	235	245	255	265	275	315	325	335	345	355	395
35	235	245	255	265	273	307	316	324	332	341	378
40	229	238	246	254	262	294	302	309	317	325	359
45	219	227	235	242	250	280	287	294	302	309	340
50	210	217	224	231	238	265	272	279	285	292	320
55	199	206	213	219	226	251	257	263	268	274	299
60	189	195	201	207	213	236	241	246	251	257	278
65	179	185	190	196	201	221	225	230	234	239	257
70	169	174	179	184	188	206	210	214	218	222	237
75	159	164	168	172	176	192	195	199	202	205	219
80	150	154	158	161	165	178	181	184	187	190	201
85	140	144	147	151	154	165	168	170	173	175	185
90	132	135	138	141	144	153	156	158	160	162	170
95	124	126	129	131	134	143	144	146	148	150	157

Manchester Centre for Civil \& Construction Engineering

EC3 LTB

1.0 For UB, UC

Same approgch as for Compression

$$
M_{b . R d}=\chi_{L T} \beta_{w} W_{p l . y} f_{y} / \gamma_{M l}
$$

$$
?_{L T}=\frac{1}{\phi_{L T}+\left[\phi_{L T}{ }^{2}-\bar{\lambda}_{L T}{ }^{2}\right]^{0,5}}
$$

$$
\phi_{L T}=0,5\left[1+\propto_{L T}\left(\bar{\lambda}_{L T}-0.2\right)+\bar{\lambda}_{L T}{ }^{2}\right]
$$

EC3 LTB

$\alpha_{L T}=0,34$ for rolled UCsections
$\alpha_{L T}=0,49$ for rolled UB sections

The non-dimensional slenderness

$$
\bar{\lambda}_{L T}=\sqrt{M_{p l . R d} / M_{c r}}
$$

$M_{c r}=C_{1} \frac{\pi^{2} E I_{z}}{L^{2}} \sqrt{\frac{I_{w}}{I_{z}}+\frac{L^{2} G I_{t}}{\pi^{2} E I_{z}}}$
Where C1 results from the bending moment diagram

EC3 LTB

- Moment factor, C_{1} loaded between restraints

EC3 LTB

- Moment factor, C_{1}. due to end moments

Same curves as before!

Figure 6.3: Buckling curves

Example

Uniform moment - unbraced length 3 m
UB 610x229x140 S275
BS $M_{b}=1100 \mathrm{kNm}$

- EC3 $\mathrm{M}_{\text {bRd }}=960 \mathrm{kNm}$

甲For comparison scale by $1 / 0.95$

- $\mathrm{M}_{\mathrm{bRd}}$ scaled $=1010 \mathrm{kNm}$ < than BS

Summary of LTB

BS5950 splits calculations between strength and equivalent moment

- EC3 combines equivalent moment and section properties to give a reduction factor
- EC3 uses EXACT same buckling curves for LTB and Strut buckling
-EC3 look awful but is easily programmed in a spreadsheet

Conclusions

Eurocodes are not that difficult
-They are just a little different
Rationalises terminology across materials and countries

- The EFTA region is 10 times bigger than UK
-Eurocodes are not going to go away this time

Questions??

1. How quickly will the take up be in the UK?
Ans: It should be quicker than the switch from BS449 to 5950 was since both EC3 and BS5950 are limit states codes. EC3 will become mandatory. lengths?
Ans: The EC3 guidance is not as helpful as BS5950 Table 22. EC3 gives the general approach for effective lengths in frames which results in the same values as Table 22

Questions??

1. How is Europe progressing with using EC3?
Ans: The German speaking countries have already adopted the DDENV as a DIN. Benelux countries are well advanced. The rest are planning the implementation.
2.

What's in EC3 about sway, lam bed crit etc?
Ans: There is a lengthy section in the prEN on frame stability. On initia viewing, this looks very like the BS5950:2000 approach. See Section 5 of the prEN for the full details

