TRM Duktilrammpfahl

Schnell, einfach, sicher

Inhalt

Willkommen bei TRM!	Seite	3
Duktec Guss: Schlag- und Korrosionsbeständig!	Seite	10
System TRM: Rammpfähle mit kleinem Durchmesser	Seite	15
Das einzige Plug&Drive Pfahlsystem	Seite	20
Anwendung: Verpresste oder unverpresste Pfähle?	Seite	40
Universell und sicher: Eine Lösung für alle Projekte	Seite	66
Vorteile des TRM Duktilrammpfahls	Seite	80

Wilkommen bei TRM!

Lösungen aus duktilem Guss

60 Millionen Euro Umsatz

- TRM ist einer der führenden Anbieter von duktilen Gussrohrsystemen in Europa
- Wir agieren weltweit. Unser Heimatmarkt ist Europa

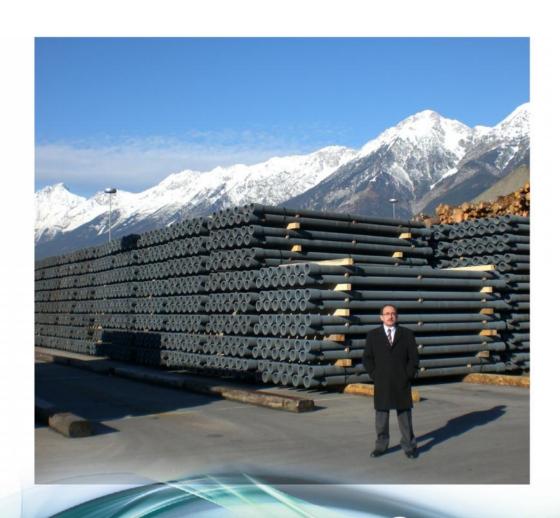
TRM Geschäftsbereiche

- Systeme f
 ür den Wassertransport
- Tiefgründung von Bauwerken

170 Mitarbeiter

- 1 Produktionsstätte in Österreich
- Hauptsitz in Hall in Tirol
- Handelsfilialen in Europa, in den USA und im Mittleren Osten (Syrien, die Arabischen Emirate)

Anwendungslösungen von TRM


Führende Technologien

- Innovative Technologien und professionelle Fachkompetenz, dauerhafte Materialeigenschaften
- TRM entwickelt, produziert und vermarktet hochwertige Systeme mit hoher Leistung

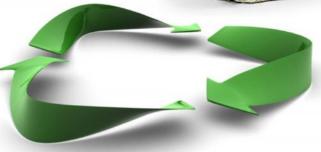
Duktile Gussrohrsysteme

- Pfahlgründungen
- Wasserwirtschaft:

Trinkwasserversorgung, Abwasserentsorgung, Beschneiungsanlagen, Turbinenleitungen und Feuerlöschsysteme

Industrielle Fertigung im Schleudergussverfahren

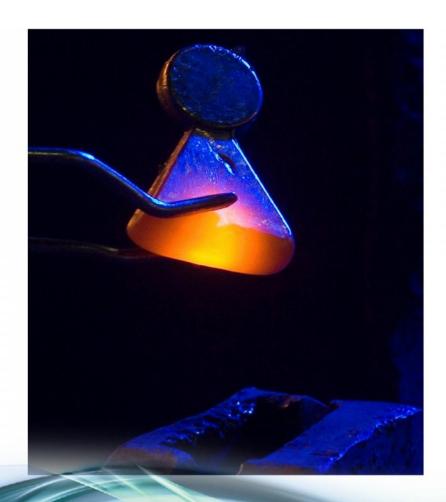
Duktec wird zu 100% aus Recycling Material gegossen



Duktec ist Umweltfreundlich

100% Recyclingmaterial

- hergestellt aus Alteisen und Eigenbruch
- auch die Pfähle sind wieder verwertbar
- ist Umweltschonend und erhält die Bodenschätze


Lückenlose Qualitätskontrolle

Konstante Qualität

- Verwendung von ausgewählten Stahlschrott
- Nachweis der chemischen Zusammensetzung: laufende Überwachung durch spektrometrische Analyse
- Kontrolle der mechanischen Eigenschaften

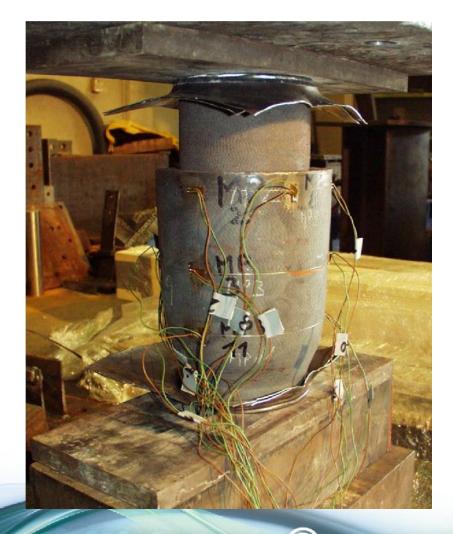
Zertifizierter Fertigungsprozess

- Europäische Technische Zulassung ETZ/07/0169
- CE Kennzeichnung
- Zertifiziert nach ISO 9001:2000

Duktec-Guss: Schlag- und Korrosionsbeständig!

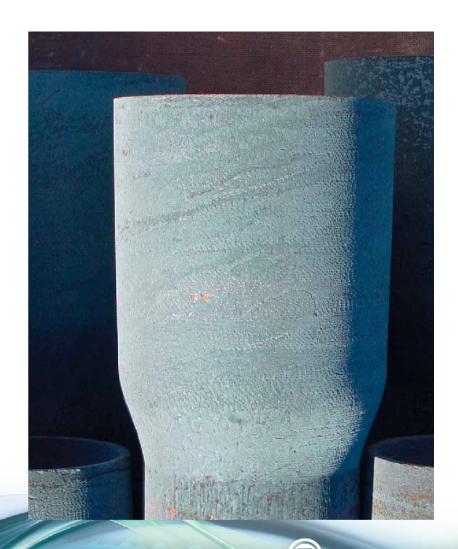
Stark: die Rohre vertragen ein intensives Rammen

Duktec Guss


- Guss mit ferritischem Gefüge
- Der Kugelgraphit bedingt die Stoßfestigkeit des duktilen Guss
- Hohe Schlagfestigkeit: kein Risiko von Brüchen oder Rissen
- Tiefe Pfähle und hohe Traglasten können Problemlos hergestellt werden

Duktil: unsere Pfähle verbinden Widerstand und Flexibilität

Hohe Elastizität


- Gute Dauerschwingfestigkeit, ähnlich Baustahl
- Gute Eigenschaften in Erdbebenzonen: Flexibilität!
- Hohe Verformbarkeit vereint mit einer hohen Widerstandsfähigkeit
- Große Dämpfungsfähigkeit von Vibrationen
- Gutes Verhältnis Tragfähigkeit/Gewicht
- Schlanke Pfähle mit hohem Widerstand: geringer Abstand

Dauerhaft: Schutz vor Korrosionsrisiken!

Nutzungsdauer >100 Jahre

- Kohlenstoffgehalt (> 3,5%) und Silizium (> 2%) höher als bei Baustählen
- Der Kohlenstoff Überschuss verhinderte eine flächige Ausbreitung der Korrosion
- Das Silizium bildet einen extrem zähen silikaten Schutzüberzug
- Höherer Korrosionswiderstand als unlegierte Baustähle

Duktec: das neue Material für Rammpfähle

Kohlenstoff C	Silizium Si	Mangan Mn	Phosphor P	Schwefel S	Magnesium M
[%]	[%]	[%]	[%]	[%]	[%]
3,5-3,8	2,2-2,6	<0,4	<0,09	<0,01	0,03-0,05

Chemische Zusammensetzung des duktilen Gusses Duktec gemäß der DIBt Zulassung Z -34.25-230

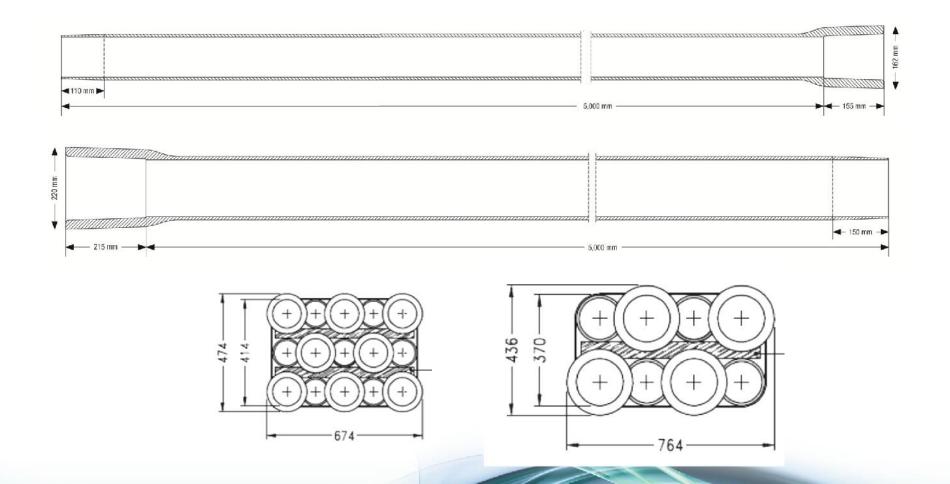
Zugfest	tigkeit	Druckfestigkeit	Streckgrenze bei 0.2%	Bruchdehnung	E - Modul	Dichte	Brinell - Härte
[MP	Pa]	[MPa]	[MPa]	[%]	[MPa]	[kg/m³]	[HB]
≥42	20	700	≥320	≥10	160.000	7.050	≥230

Mechanische Eigenschaften des duktilen Gusses Duktec gemäß der DIBt Zulassung Z -34.25-230

Bis zu 975 m Rohre mit einem LKW

Schnell, einfach: Rohrverbindung ohne Aufwand

Standard – kurze Baulänge 5,0 m

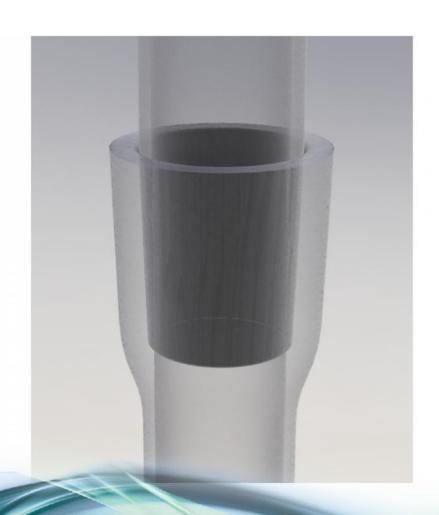

- Einsatz von leichten und kompakten Geräten ohne Lafette
- Günstige Transportkosten bis zu 975 m pro Ladung direkt auf die Baustelle
- Seetransport im 20' Container möglich
- Einfache Logistik geringe Anforderung an den Lagerplatz
- Sicheres Handling der einzelnen Elemente

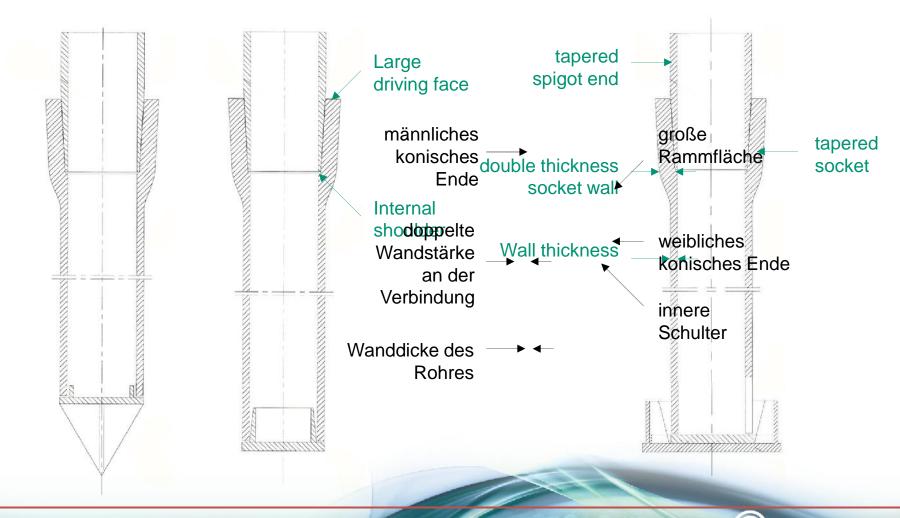
Eine Standardlänge, 5 Rohrvarianten zur Auswahl!

Aussendurch- messer	Wandstärke	Baulänge	Gewicht	Rohrgewicht Länge = 5,0 m	Durchmesser der Verbindung	Querschnitt
[mm]	[mm]	[m]	[kg/m]	[kg]	[mm]	[mm²]
Ø 118	7,5	5,0	21,0	105	160	2.604
Ø 118	9,0	5,0	24,4	123	160	3.082
Ø 118	10,6	5,0	28,0	142	160	3.577
Ø 170	9,0	5,0	37,2	186	218	4.552
Ø 170	10,6	5,0	42,6	213	218	5.308

Standardlänge von 5.0 m für alle Varianten

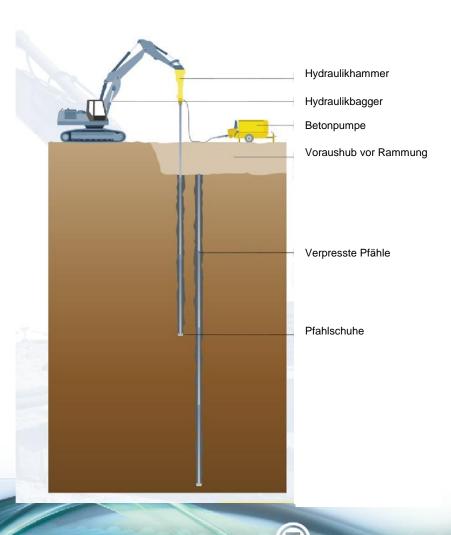
Lagerhaltung aller Rohrdimensionen


Die einzigartige Steckmuffenverbindung


Plug & Drive® Pfahlverbindung mit hohem Knickwiderstand

Konische Verbindung Plug & Drive

- Die konischen Enden (Männchen/Weibchen) verbinden sich, indem sie einen Teil der Schlagenergie absorbiert
- Kaltverschweißung an den rauen Oberflächen der Muffe
- Elastische Verformung: radiale Einspannung
- erhöhte Biegesteifigkeit im Bereich der Muffe
- Garantierte konzentrische Ausrichtung der Rohre
- schnelle Ausführung: Zeit- und Kostenersparnis gegenüber Schweißverbindungen oder mechanischen Kupplungen


Plug&Drive ersetzt schweißen und schrauben

Variabel: beliebige Pfahllängen wie benötigt!

Endlos verlängerbar

- Verlängern und kürzen des Pfahls ist jederzeit möglich
- Sehr große Pfahllängen sind machbar
- Die TRM-Pfähle sind bis zu Tiefen von 70 m in Portugal und in Österreich eingebaut worden
- Integrität und Kontinuität der Pfahlbewehrung sind Sichergestellt
- Sofortige Herstellung des Pfahlkopfes: spart Kosten und Zeit, gegenüber traditioneller Kopfbearbeitung

System TRM: Rammpfähle mit kleinem Durchmesser

Sicher: Vibrationsarmes Pfahlsystem

Hydraulischer Schnellschlaghammer

- Hohe Schlagfrequenz: große Produktivität
- Konstruiert f
 ür schwere Abbrucharbeiten und Arbeiten im Steinbruch
- Schlagenergie von 3.000 bis 5.000 Joule
- Einfache Montage am Bagger
- Gemessene Erschütterungen, unterhalb der kritischen Schwelle für sehr empfindliche Konstruktionen
- Ausführung der Pfähle in unmittelbarer Nähe zu bestehenden Gebäuden (40 cm Achsabstand)
- Höhere Traglast der gerammten Pfähle, gegenüber gerüttelten Pfählen (Transvib 2006)

Schwere Hydraulikhämmer: Maximale Leistung!

Atlas Copco	Gewicht des Baggers [t]	Einsatz- gewicht [kg]	Ölmenge [I/min]	Öldruck [bar]	Schlagzahl [1/min]	Werkzeug- durchmesser [mm]
MB 1700	19-32	1.700	130-170	160-180	320-600	140
HB 2000	22-38	2.000	150-190	160-180	300-625	145
HB 2500	27-46	2.500	170-220	160-180	280-550	155

Montabert	Gewicht des Baggers [t]	Einsatz- gewicht [kg]	Ölmenge [I/min]	Öldruck [bar]	Schlagzahl [1/min]	Werkzeug- durchmesser [mm]
V 1200	18-30	1.739	120-170	155	540-770	122
V 1800	20-30	1.884	140-220	165	310-800	140
V 2500	27-40	2.571	175-250	155	350-800	160

Einfache Anbringung am Bagger

Herstellung in 40 cm Abstand zum Bestand

Sauber: Duktile Pfähle erzeugen kein Bohrgut

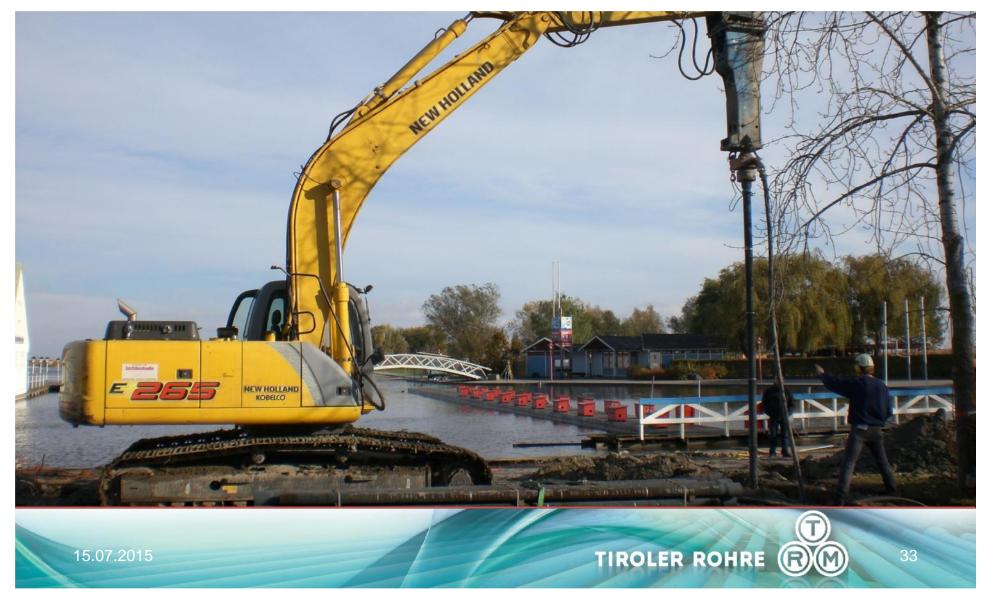
Keine Bohrgutförderung

- keine zusätzlichen Transportkosten, weniger Baustellenverkehr
- Kontaminierte Böden: keine Deponie- und Entsorgungskosten
- Keine Druckluft- oder Wasserspülung: Saubere Baustelle, sichere Straßen/Verkehrszonen

Keine Druckluft- oder Wasserspülung: Sichere Wege

Sicher: Rammpfähle verbessern den Baugrund

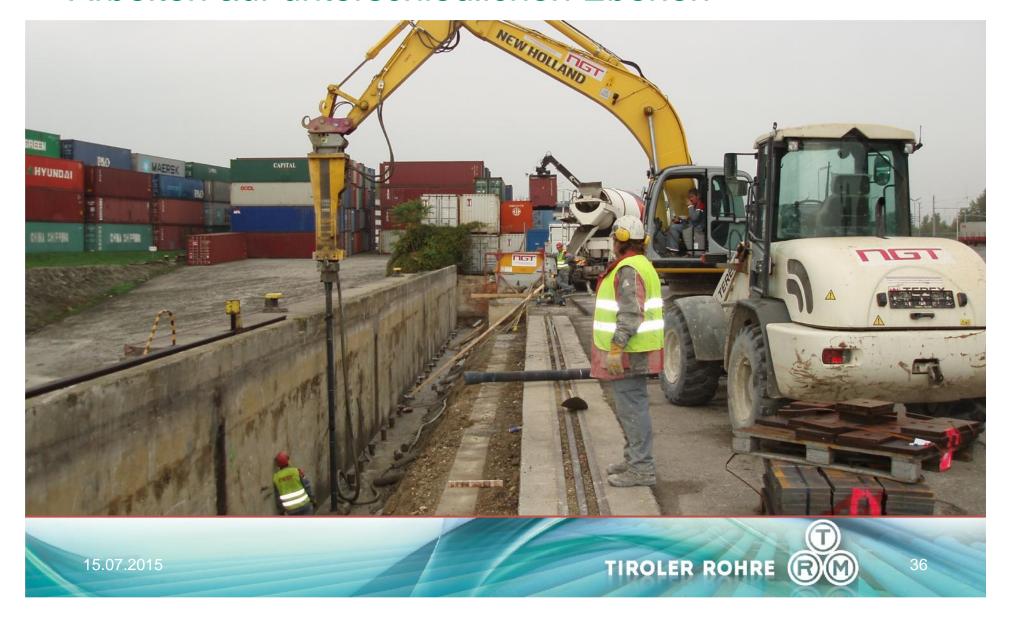
Verdrängung des Bodens


- Erhöhung der mechanischen Eigenschaften des umliegenden Bodens durch Verdrängung und Verdichtung
- Geringe Bodenstörungen: keine Bodenhebung, hohe Stabilität in komprimierbaren Böden
- Ausführung bei Grundwasser und/oder artesisch gespanntem Wasser möglich
- Bis zu 45° schräge Pfähle: zum Abtrag von Horizontalkräften
- Verlängerung über das Gelände für aufgeständerte Bauten einfach möglich

Geringe Pfahlabstände

Sichere Ausführung bei hohen Grundwasserstand

Mögliche Neigung der Pfähle bis zu 45 Grad


Schnell: kompaktes und leichtes Rammgeräte!

Hydraulische Standardbagger

- schnelle Mobilisierung, schnelles umsetzen!
- mögliche Errichtung der Pfähle bis zu 4 m Abstand vom Bagger und auf anderen Gründungsniveaus
- mögliche Arbeit unter beschränkter Höhe, die auf 5,0/7,5m begrenzt ist
- nur eine Maschine für die Handhabung und das Schlagen
- geringe Anforderungen an Rammebene / Zufahrt

Arbeiten auf unterschiedlichen Ebenen

Einbau bei beschränkter Raumhöhe

Arbeiten auf Böden mit geringer Tragfähigkeit

Hohe Tragfähigkeit, im Vergleich zum Pfahldurchmesser

Bemessungswerte R_{i,d}

		Bemessungsw	sste Pfähle (kN)	
		Mit Beto	Ohne Beton	
Тур	Wandstärke [mm]	C20/25	C25/30	Pfahl
118	7,5	944	972	833
118	9,0	1.091	1.117	986
118	10,6	1.243	1.267	1.144
170	9,0	1.699	1.759	1.457
170	10,6	1.930	1.988	1.699

Tabelle 2: Bemessungswerte Ri,d der Querschnittstragfähigkeit von Pfählen mit innerer Betonverfüllung und Betongüte C20/25 und C25/30

Der Einsatz: verpresst oder unverpresst?

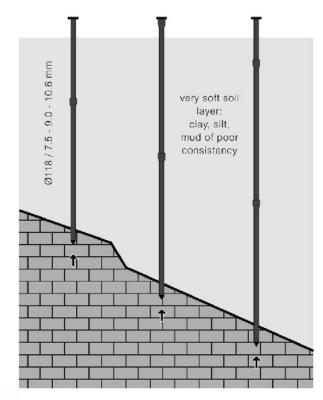
Aufstandspfähle in Fels oder sehr harten Böden

Aufstandspfähle

- TRM Duktilrammpfähle werden bis zum stillstand in den Felsen oder in sehe harte und dicht gelagerte Bodenschichten eingerammt
- Die nachträgliche Betonverfüllung erhöht die Tragfähigkeit

Hohe Tragkraft

- Die zulässig Tragkraft ist nur von den Materialkennwerten abhängig und einer eventuellen Knickgefahr (c, <15N/mm²)
- Zulässige Drucklasten bis zu 1,400 kN



Bearing stratum: rock, limestone, till, very compact sand

Optimale Anpassung an den tragfähigen Untergrund

Flexibles Pfahlsystem

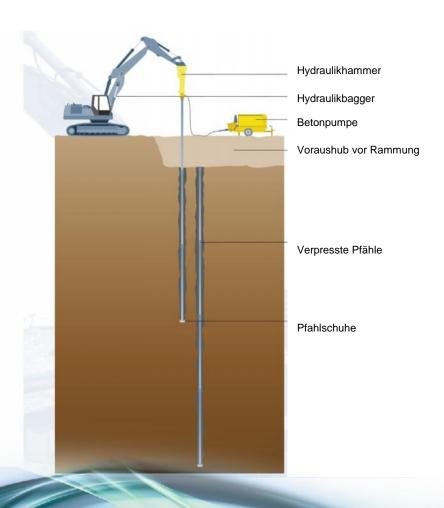
- Die Tragfähigkeit wird beim Rammen überprüft
- Die Aufzeichnung des Rammverlaufes dokumentiert die erfolgreiche Pfahlinstallation
- Duktilrammpfähle können beliebig auf die Endhöhe gekürzt oder durch das Plug & Drive System verlängert werden
- Die Pfähllängen können einfach an den tragfähigen Untergrund angepasst werden

Bearing stratum: rock, limestone, till, very compact sand

Rammen mit mitlaufender Verpressung

Alles auf einmal

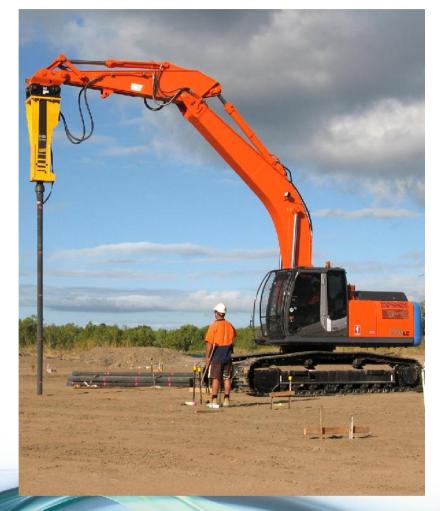
- Rammen und Verpressen geschieht in einem Arbeitsgang
- Das Anfangsrohr wird mit einem vergrößerten Rammschuh versehen der während des Rammens einen Ringraum im Boden erzeugt
- Der Hohlraum wird kontinuierlich von der Spitze aus mit Mörtel verfüllt, während der Pfahl eingerammt wird
- Duktilrammpfähle können in allen weichen und lockeren Böden ohne Verrohrung eingebracht werden


Verpressen verringert die Mantelreibung beim Rammen

Große Tiefen möglich

- Mörtel wird aus dem Rammschuh ausgepresst und bildet eine Gleitzone um den Pfahlschaft
- Dies reduziert die Mantelreibung und die nötige Rammenergie während des Einbaus
- Duktilrammpfähle können mit kompakten Standardbaggern bis in große Tiefen eingebaut werden

Gute Verzahnung von Pfahl und Boden


 Die erhärtete Mörtelschicht verklebt den Pfahlschaft mit dem umgebenden Boden, das erzeugt die nötige Mantelreibung

Schnell, einfach: Reduziert die Bauzeit!

Hohe Tagesleistung

- Einfache Verbindung der 5m langen Rohre durch Plug & Drive
- Hohe Tagesleistung: 200 bis 400 laufende Meter
- Sofortige Herstellung des Pfahlkopfes

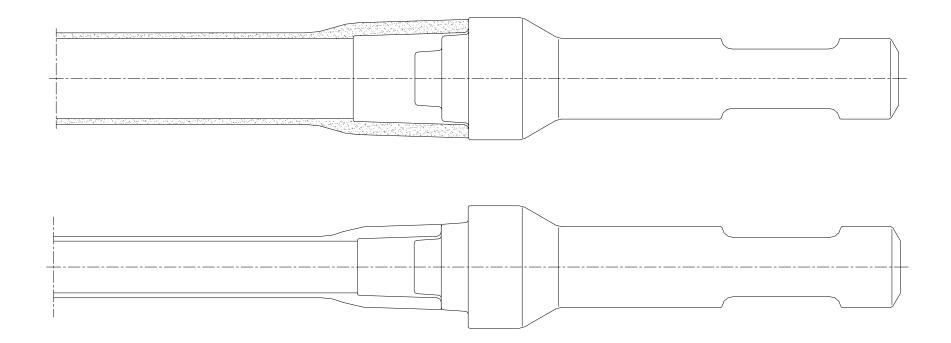
Wirtschaftliche und kostengünstige Tiefgründung

Wettbewerbsfähiges System

- Kein Nachbearbeiten der Pfahlköpfe
- Kein Verschnitt: Rohrabschnitt wird für den nächsten Pfahl weiterverwendet
- Vollverdrängungssystem: Kein Bohrgut anfall
- keine Leerrammung:Pfahlansatz auf Endhöhe
- Kein nachverpressen nötig

Sofortiges abschneiden auf Endhöhe

Kontrolle des Duktilpfahls nach dem Einbau


Der Überstand wird für den nächsten Pfahl genutzt

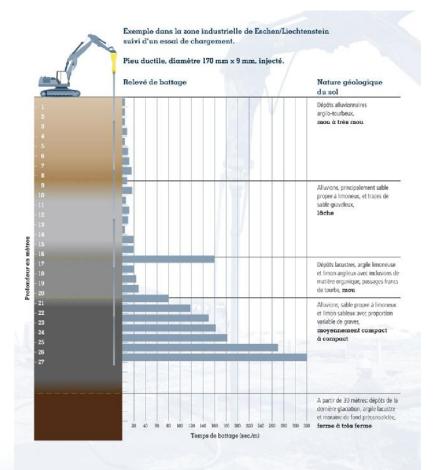

Zubehör für das TRM Pfahlsystem!

Doppelschlagstück für Typ 170 und 118

Schlagstück für verpresste und unverpresste Pfähle

Verpressen garantiert einen effektiven Korrosionsschutz

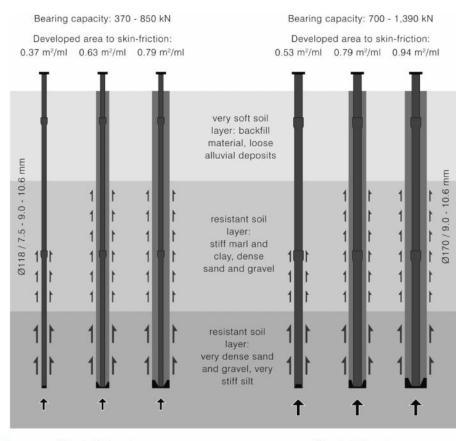
Wirksamer Korrosionsschutz


 Kontinuierlicher 5 cm starker Betonmantel verlängert die Lebensdauer des Systems (>50Jahre)

Nachweis der äußeren Tragfähigkeit während der Herstellung

Direkte Korrelation

- Der gemessene Eindringswiderstand wird als Kriterium für die Tragfähigkeit der angefahrenen Bodenschichten herangezogen.
- Korrelation zwischen Rammzeiten und Mantelreibunsbeiwerte
- Anpassung der Pfahllänge an die Tatsächlich angetroffenen Baugrundverhältnisse

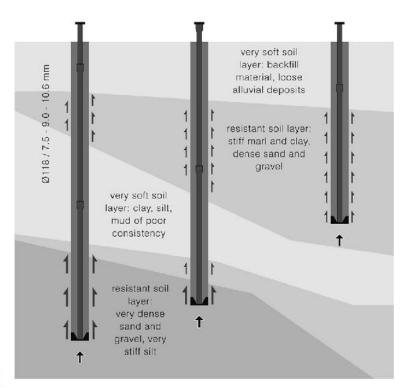

Verpressen erhöht die Mantelreibung und den Spitzendruck

Kombinierte Mantelreibungs- und Aufstandspfähle

- Duktilrammpfähle entwickeln hohe Mantelreibungswerte sowohl in bindigen als auch nichtbindigen Böden
- Duktilrammpfähle werden in den Boden gerammt, bis die berechnete Länge oder die nötige Tragkraft erreicht ist

Längenoptimierung

 Duktilrammpfähle benötigen geringer Pfahllängen im vergleich zu gebohrten Micropfählen



Pile shaft diameter: Ø118 mm Ø200 mm Ø250 mm Pile shaft diameter: Ø170 mm Ø250 mm Ø300 mm

Gleichzeitiges Rammen und Verpressen

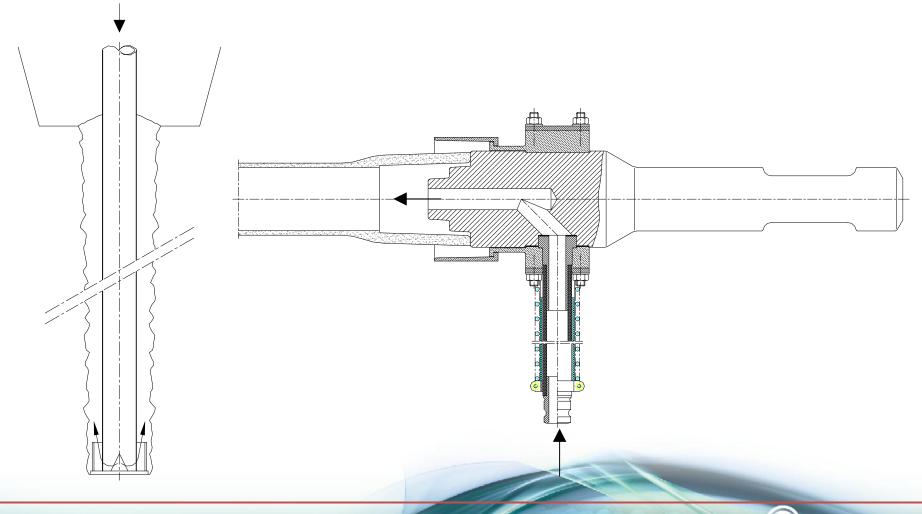
Direkte Korrelation

- Die gemessenen Rammzeiten in den unterschiedlichen Bodenschichten zeigen die zulässige Mantelreibung an.
- Korrelation zwischen Rammzeit und vorhandener Mantelreibung

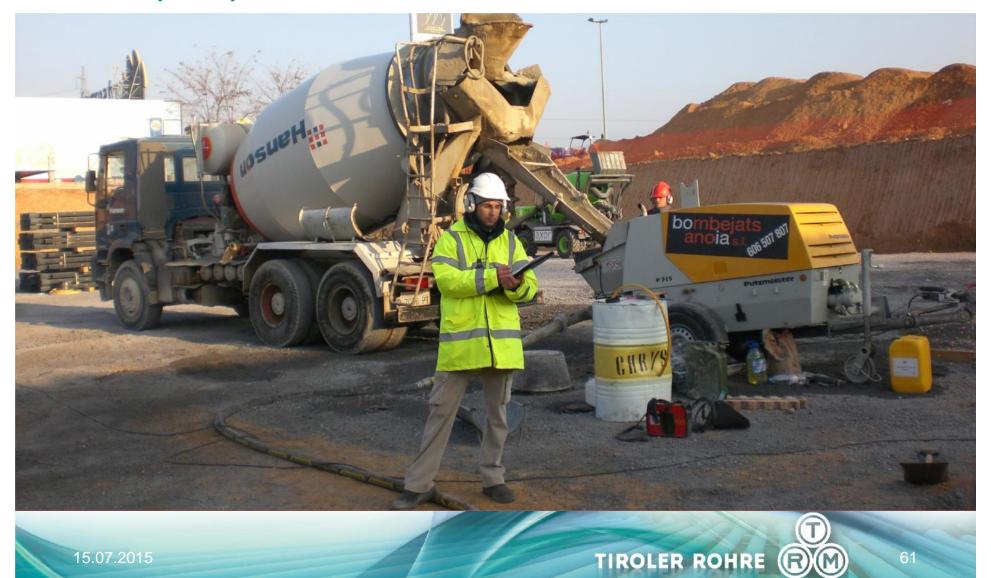
Pile shaft diameter: 250 mm diameter / Developed area for friction: 0.79 m² per m

Mantelreibung in nicht bindigen Böden

Rammzeiten [s/m]	Lagerungsdichte	Standard Penetration Test SPT N30	Dynamic Probing Medium DPM N10	Dynamic probing heavy DPH N10	Mantelreibungs- werte [kN/m²]
gedrückt	sehr locker	<4	0-4	0-2	0
5-10	locker	4-10	4-11	3-5	40
10-20	mitteldicht	10-30	11-26	6-15	80
20-30	dicht	30-50	26-44	16-30	120
>30	sehr dicht	>50	>44	>30	150


Korrelation zwischen Rammzeit, Schlagzahl Rammsondierungen und zugeordneten Mantelreibungsbeiwerte für nicht bindige Böden (Sicherheitsbeiwert 2,0 enthalten)

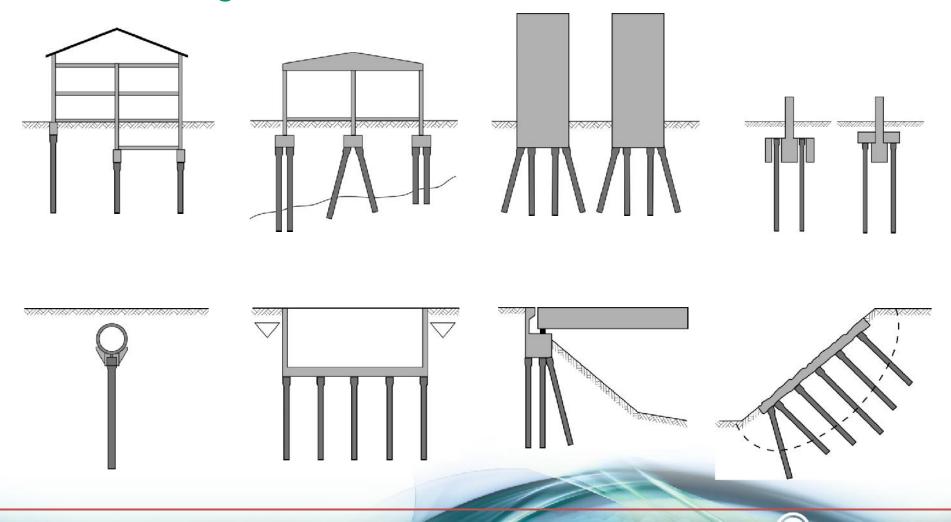
Mantelreibung in bindigen Böden


Rammzeiten [s/m]	Lagerungsdichte	Standard Penetration Test SPT N30	Dynamic Probing Medium DPM N10	Dynamic probing heavy DPH N10	Mantelreibungs- wert [kN/m²]
gedrückt	breiig - weich	0-2	0-3	0-1	0
5-10	weich - steif	3-8	3-8	2-5	20
10-15	steif	8-15	8-14	5-7	40
15-30	halbfest	16-30	14-28	8-15	70
>30	fest	>30	>28	>15	100

Korrelation zwischen Rammzeit, Schlagzahl Rammsondierungen und zugeordneten Mantelreibungsbeiwerte für bindige Böden (Sicherheitsbeiwert 2,0 enthalten)

Mörtelinjektion während des Rammens

Betonpumpe: Zementmörtel 0-4 mm


Verpressung mit Mörtel 0-4 mm oder Zementsuspension

Alternative Verpressung: Trockensilomörtel

Anwendungsbereiche

Fundamentierung der Fertigteilfundamente in 10 Tagen

Leistung 390 m/Tag

3.900 m verpresste Pfähle 118/7,5; Länge 10,0-15,0 m; Last 600 kN

Fundamente für einen Solarpark

Der Lastabtrag der Solarmodule erfolgt durch je 3 Pfähle

Verpresste Pfähle 118/7,5 von 15,0 bis 25,0 m

Solarpark Lebrija 3,2 MW, Spanien

Gründung einer Hochspannungsleitung

Verpresste Pfähle 170/9,0 und 118/7,5 von 8,0 bis 15,0 m

Maximale Pfahllasten von 1.010 kN Druck und 920 kN Zug

Nachgründung unter beschränkter Höhe

Fundamentverstärkung mit 1,900 m verpresster Pfähle 118/7,5

Rammen unter beschränkter Höhe von 7,5 m

Umnutzung als Ausstellungs- und Lagerhalle

Schnelle Gründung einer 2spurigen Brücke

10 Pfähle je Widerlager mit einer Gebrauchslast von 950 kN

Verpresste Pfähle 170/9,0, Länge 12,5 m

2 Arbeitstage incl Baustelle einrichten und räumen

3000 Pfähle für ein Lärmschutzwand

Verpresste Pfähle 118/7,5: 30.000 m in 30 Wochen

Pfahlgruppen für Druck- Zug und Horizontallasten

Fundamente für eine neue Mole in Dublin

Pfähle 118/9,0 im Salzwasser

Korrosionsbeständig durch große Wandstärke für 100 Jahre

Gründung unter beengten Verhältnissen

1.200 m verpresste Pfähle 118/7,5 und 118/10,6: Länge 7,0-8,0 m

Rammen der Pfähle am bestehenden Gebäude

Böschungssicherung

2.500 m verpresste Pfähle 170/10,6 mittlere Länge 9,0 bis 10,0 m

Böschungswinkel 1:2

Ausführung ohne Verkehrsbehinderung

Pfahlgelagerte Abwasserleitung

Duktilpfähle 118/7,5 mit Rohrsattel garantieren das Gefälle der Abwasserleitung DN 500 im nichttragfähigen Erdreich

Gründung einer Feriensiedlung

2.700 m verpresste Pfähle 118/7,5 im Grundwasser: Länge 10,0-15,0 m

Unterschiedliche Lasten von 100 kN bis 240 kN

Über 16.000 m Pfahlgründungen für Windkraftanlagen

Maximallasten von 961 kN Druck, 357 kN Zug

32 verpresste Pfähle 170/10,6 für Windturbine Vestas V90

Vorteile der Verwendung von Duktilrammpfähle

- 1. Erschütterungsarm: Pfähle können im Abstand von 40 cm zu bestehenden Gebäuden erstellt werden
- 2. Selbsttestend beim Einbau, effizient, Bodenverbesserung durch das Rammen
- 3. Kein Bohrgut, kein Pfahlüberstand, keine Kopfbearbeitung, keine Härtezeit
- 4. Hohe Produktivität, geringe Mobilisierungskosten, kurze Bauzeit
- 5. Hoher Schlag- und Korrosionswiderstand, Jahrzehntelange nachweisbare erfolgreiche Fundamentierungen
- 6. Pfähle fertig für die nachfolgenden Gewerke

Der TRM – Duktilrammpfahl

Einfache Anpassung der Pfähle an die Bodenverhältnisse

thomas.aumueller@trm.at