HOW TO DESIGN

CONCRETE STRUCTURES

Getting Started

Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO:

"All or part of the information contained herein may be used, translated and adapted at national level with reference and credit to the original publication issued by the European Concrete Platform". (See guidelines)

It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and ERMCO to translate and/or adapt this publication within their national framework, to publish it under their own name and logo and to disseminate it to their contacts at national level. The logo of the European Concrete Platform cannot be used at national level.

It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and ERMCO to <u>submit for authorisation</u> the national version of the Concise Eurocode 2 and the "How to leaflets" to their respective national standardisation committee responsible for the Eurocodes.

Copyright: *Name of national concrete platform or national Member* Acknowledgements to the European Concrete Platform ASBL

To be adapted at national level:

Copyright: Name of national concrete platform or National member, date Acknowledgements to the European Concrete Platform ASBL

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of *(Name of national concrete platform or National member)*.

Published by *Name of national concrete platform or National member* Editor:

... address country

Layout & Printing by Name of national concrete platform or National member

All information in this document is deemed to be accurate by (Name of national concrete platform or National member) at the time of going into press. It is given in good faith.

Information on *(Name of national concrete platform or National member)* document does not create any liability for its Members. While the goal is to keep this information timely and accurate, *(Name of national concrete platform or National member)* cannot guarantee either. If errors are brought to its attention, they will be corrected.

The opinions reflected in this document are those of the authors and (Name of national concrete platform or National member) cannot be held liable for any view expressed therein.

All advice or information from *(Name of national concrete platform or National member)* is intended for those who will evaluate the significance and limitations of its contents and take responsibility for its use and application. No liability (including for negligence) for any loss resulting from such advice or information is accepted.

Readers should note that all *(Name of national concrete platform or National member)* publications are subject to revision from time to time and therefore ensure that they are in possession of the latest version.

How to design concrete structures using Eurocode 2

2. Getting started

Introduction

This to be redrafted as appropriate in each country.

The design process

This guide is intended to assist the designer determine all the design information required prior to embarking on detailed element design. It covers design life, actions on structures, load arrangements, combinations of actions, method of analysis, material properties, stability and imperfections, minimum concrete cover and maximum crack widths.

Where NDPs occur in the text in this publication, recommended values in EN 1992 are used and highlighted in yellow. The UK values have been used for NDPs embedded in figures and charts and the relevant NDPs are scheduled separately to assist other users in adapting the figures and charts.

The process of designing elements will not be revolutionised as a result of using Eurocode 2¹, although much of the detail may change – as described in subsequent guides in this series.

Detailing is not covered in these guides, but the process will not vary significantly from current practice. With regard to specification, advice can be found in the guide *Introduction to Eurocodes*². In the long-term it is anticipated that Eurocode 2 will lead to more economic structures.

Design life

The design life for a structure is given in Eurocode: *Basis of structural design*³. These are noted in Table 1 (overleaf). These should be used to determine the durability requirements for the design of reinforced concrete structures.

Actions on structures Eurocode 1: Actions on structures⁴ consists of 10 parts giving details of a wide variety of actions. Further information on the individual codes can be found in the first guide in this series, *How to design concrete structures using Eurocode 2: Introduction to Eurocodes*.

Eurocode 1, Part 1–1: General actions – *Densities, self-weight, imposed loads for buildings*⁵ gives the densities and self-weights of building materials (see Table 2 overleaf). It should be noted that there is no advice given for loading in plant rooms.

At the time of writing not all the parts of Eurocode 1 and their National Annexes are available. Advice on the use of current national standards in conjunction with EC2 should be determined by the relevant authorities in a country.

Table 1

Indicative design working life (from UK National Annex to Eurocode)

Design life (years)	Examples
10	Temporary structures
10–30	Replaceable structural parts
15–25	Agricultural and similar structures
50	Buildings and other common structures
120	Monumental buildings, bridges and other civil engineering structures

Table 2

Selected bulk density of materials (from Eurocode 1, Part 1-1)

Material	Bulk density (kN/m³)
Normal weight concrete	24.0
Reinforced normal weight concrete	25.0
Wet normal weight reinforced concrete	26.0

Figure 1

Alternate spans loaded

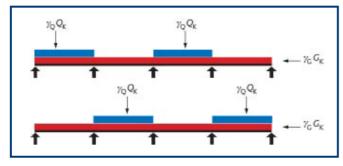
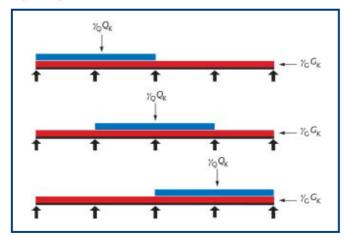
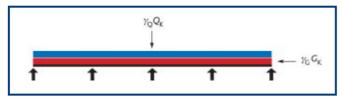




Figure 2 Adjacent spans loaded

Figure 3 All spans loaded

Load arrangements

The term load arrangements refers to the arranging of variable actions(e.g. imposed and wind loads) to give the most onerous forces in a member or structure and are given in Eurocode 2 and National Annexes are allowed to provide simplifications.

For building structures Eurocode 2 Part 1–1 recommends the following load arrangements for both the ultimate limit state and serviceability limit state:

Alternate or adjacent spans loaded

The design values should be obtained from the more critical of:

- Alternate spans carrying the design variable and permanent loads with other spans loaded with only the design permanent load (seeFigure 1). The value of *y*_G should be the same throughout.
- Any two adjacent spans carrying the design variable and permanent loads with other spans loaded with only the design permanent load (see Figure 2). The value of *y*_G should be the same throughout.

Combination of actions

The term combination of actions refers to the value of actions to be used when a limit state is under the influence of different actions.

The numerical values of the partial factors for the ULS combination canbe obtained by referring to Eurocode: *Basis of structural design or the guide Introduction to Eurocodes*².

There are three SLS combinations of actions – characteristic, frequent and quasi-permanent. The numerical values are given in Eurocode: *Basis of structural design*.

Material properties

Concrete

In Eurocode 2 the design of reinforced concrete is based on the characteristic cylinder strength rather than cube strength and should be specified according to $EN 206-1^7$ (e.g. for class C28/35 concrete the cylinderstrength is 28 MPa, whereas the cube strength is 35 MPa).Typical concrete properties are given in Table 4.

Concrete up to class C90/105 can be designed using Eurocode 2. For classes above C50/60, however, there are additional rules and variations. For this reason, the design of these higher classes is not considered in this series of guides.

Reinforcing steel

Eurocode 2 can be used with reinforcement of characteristic strengths ranging from 400 to 600 MPa. The properties of steel reinforcement are summarised in Table 5 (on page 4). There are three classes of reinforcement, A, B and C, which provide increasing ductility. Class A is not suitable where redistribution of 20% and above has been assumed in the design. There is no provision for the use of plain bar or mild steel reinforcement.

Table 3

Selected imposed loads for buildings (from draft UK National Annex to Eurocode 1, Part 1–1)

Category	Example use	<i>q</i> _k (kN/m²)	Q _k (kN)
A1	All uses within self-contained dwelling units	1.5	2.0
A2	Bedrooms and dormitories	1.5	2.0
A3	Bedrooms in hotels and motels, hospital wards and toilets	2.0	2.0
A5	Balconies in single family dwelling units	2.5	2.0
A7	Balconies in hotels and motels	4.0 min.	2.0 at outer edge
B1	Offices for general use	2.5	2.7
C5	Assembly area without fixed seating, concert halls, bars, places of worship	5.0	3.6
D1/2	Shopping areas	4.0	3.6
E12	General storage	2.4 per m height	7.0
E17	Dense mobile stacking in warehouses	4.8 per m height (min. 15.0)	7.0
F	Gross vehicle weight ≤ 30kN	2.5	10.0

Table 4

Selected concrete properties based on Table 3.1 of Eurocode 2, Part 1–1

Description	Properties										
Characteristic cylinder strength	12	16	20	25	30	35	40	45	50	28ª	32ª
Characteristic cube strength	15	20	25	30	37	45	50	55	60	35	40
Mean tensile strength	1.6	1.9	2.2	2.6	2.9	3.2	3.5	3.8	4.1	2.8	3.0
Secant modulus of elasticity	27	29	30	31	33	34	35	36	37	32	34
	Characteristic cylinder strength Characteristic cube strength Mean tensile strength	Characteristic cylinder strength12Characteristic cube strength15Mean tensile strength1.6	Characteristic cylinder strength1216Characteristic cube strength1520Mean tensile strength1.61.9	Characteristic cylinder strength121620Characteristic cube strength152025Mean tensile strength1.61.92.2	Characteristic cylinder strength 12 16 20 25 Characteristic cube strength 15 20 25 30 Mean tensile strength 1.6 1.9 2.2 2.6	Characteristic cylinder strength 12 16 20 25 30 Characteristic cube strength 15 20 25 30 37 Mean tensile strength 1.6 1.9 2.2 2.6 2.9	Characteristic cylinder strength 12 16 20 25 30 35 Characteristic cube strength 15 20 25 30 37 45 Mean tensile strength 1.6 1.9 2.2 2.6 2.9 3.2	Characteristic cylinder strength 12 16 20 25 30 35 40 Characteristic cube strength 15 20 25 30 37 45 50 Mean tensile strength 1.6 1.9 2.2 2.6 2.9 3.2 3.5	Characteristic cylinder strength 12 16 20 25 30 35 40 45 Characteristic cube strength 15 20 25 30 37 45 50 55 Mean tensile strength 1.6 1.9 2.2 2.6 2.9 3.2 3.8	Characteristic cylinder strength 12 16 20 25 30 35 40 45 50 Characteristic cube strength 15 20 25 30 37 45 50 60 Mean tensile strength 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1	Characteristic cylinder strength 12 16 20 25 30 35 40 45 50 28 ^a Characteristic cube strength 15 20 25 30 37 45 50 55 60 35 Mean tensile strength 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1 2.8

Key

a Concrete class not cited in Table 3.1, Eurocode 2, Part 1–1

b Mean secant modulus of elasticity at 28 days for concrete with quartzite aggregates. For concretes with other aggregates refer to Cl 3.1.3 (2)

Table 5 Characteristic tensile properties of reinforcement

Class (BS 4449) and designation (BS 8666)	Α	В	С
Characteristic yield strength $f_{\rm yk}$ or $f_{\rm 0.2k}$ (MPa)	500	500	500
Minimum value of $k = (f_t/f_y)_k$	≥ 1.05	≥ 1.08	≥ 1.15 < 1.35
Characteristic strain at maximum force ε_{uk} (%)	≥ 2.5	≥ 5.0	≥ 7.5
Notes			

 Table derived from BS EN 1992–1–1 Annex C, BS 4449: 2005 and BS EN 10080¹⁰.
 The nomenclature used in BS 4449: 2005 differs from that used in BS EN 1992–1–1 Annex C and used here.

3 In accordance with BS 8666, class H may be specified, in which case class A, B or C may be supplied.

Table 6

Bending moment and shear co-efficients for beams

	Moment	Shear
Outer support	25% of span moment	0.45 (G + Q)
Near middle of end span	0.900 Gl + 0.100 Ql	
At first interior support	-0.094 (G + Q)l	0.63 (G + Q) ^a
At middle of interior spans	0.066 Gl + 0.086 Ql	
At interior supports	-0.075 (G + Q)l	0.50 (G + Q)
Key		

a 0.55 (G + Q) may be used adjacent to the interior span.

Notes

- 1 Redistribution of support moments by 15% has been included.
- **2** Applicable to 3 or more spans only and where $Q_k \leq G_k$.

3 Minimum span ≥ 0.85 longest span.

4 *l* is the effective length, *G* is the total of the ULS permanent actions, *Q* is the total of the ULS variable actions.

Table 7

Exposure classes

Class	Description					
No risk o	f corrosion or attack					
X0	For concrete without reinforcement or embedded metal where there is no significant freeze/thaw, abrasion or chemical attack.					
Corrosion	n induced by carbonation					
XC1	Dry or permanently wet					
XC2	Wet, rarely dry					
XC3/4	Moderate humidity or cyclic wet and dry					
Corrosion	n induced by chlorides other than from seawater					
XD1	Moderate humidity					
XD2	Wet, rarely dry					
XD3	Cyclic wet and dry					
Corrosion	n induced by chlorides from seawater					
XS1	Exposed to airborne salt but not in direct contact with sea water					
XS2	Permanently submerged					
XS3	Tidal, splash and spray zones					
Freeze/tł	naw with or without de-icing agents					
XF1	Moderate water saturation without de-icing agent					
XF2	Moderate water saturation with de-icing agent					
XF3	High water saturation without de-icing agent					
XF4	High water saturation with de-icing agent or sea water					
Chemica	Chemical attack (ACEC classes)					
Refer to E	Refer to BS 8500-1 and Special Digest 111					

Structural analysis

The primary purpose of structural analysis in building structures is to establish the distribution of internal forces and moments over the whole or part of a structure and to identify the critical design conditions at all sections. The geometry is commonly idealised by considering the structure to be made up of linear elements and plane two-dimensional elements.

The type of analysis should be appropriate to the problem being considered. The following may be used: linear elastic analysis, linear elastic analysis with limited redistribution, and plastic analysis. Linear elastic analysis may be carried out assuming cross sections are uncracked (i.e. concrete section properties); using linear stress-strain relationships, and assuming mean values of elastic modulus.

For the ultimate limit state only, the moments derived from elastic analysis may be redistributed (up to a maximum of 30%) provided that the resulting distribution of moments remains in equilibrium with the applied loads and subject to certain limits and design criteria (e.g. limitations of depth to neutral axis).

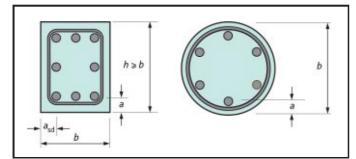
Regardless of the method of analysis used, the following principles apply:

- Where a beam or slab is monolithic with its supports, the critical design hogging moment may be taken as that at the face of the support, but should not be taken as less than 0.65 times the full fixed end moment.
- Where a beam or slab is continuous over a support that may be considered not to provide rotational restraint, the moment calculated at the centre line of the support may be reduced by (*F*_{Ed,sup} t/8),where *F*_{Ed,sup} is the support reaction and t is the breadth of the support.
- For the design of columns the elastic moments from the frame action should be used without any redistribution.

Bending moment and shear force co-efficients for beams are given in Table 6; these are suitable where spans are of similar length and the other notes to the table are observed.

Minimum concrete cover

The nominal cover can be assessed as follows:


 $c_{\text{nom}} = c_{\text{min}} + \Delta c_{\text{dev}}$ Exp. (4.1)

Where c_{\min} should be set to satisfy the requirements below:

- safe transmission of bond forces
- durability
- fire resistance

and Δc_{dev} is an allowance which should be made in the design for deviations from the minimum cover. It should be taken as 10 mm, unless fabrication (i.e. construction) is subjected to a quality assurance system, in which case it is permitted to reduce Δc_{dev} to between 10 mm and 5 mm.

Figure 4 Sections through structural members, showing nominal axis distance, *a*

Table 9

Minimum column dimensions and axis distances for columns with rectangular or circular section – method A

Standard fire resistance	Minimum dimensions (mm) Column width (b _{min})/axis distance (a) of the main ba							
	Column exposed on more than one side ($\mu_{fi} = 0.7$)	Exposed on one side $(\mu_{fi} = 0.7)$						
R 60	250/46 350/40	155/25						
R 120	350/57* 450/51*	175/35						
R 240	†	295/70						
Notes								

1 Refer to BS EN 1992–1–2 for design limitations.

2 $\mu_{\rm fi}$ is the ratio of the design axial load under fire conditions to the design resistance of the column at normal temperature conditions. Conservatively $\mu_{\rm fi}$ may be taken as 0.7.

* Minimum 8 bars.

Minimum cover for bond

The minimum cover to ensure adequate bond should not be less than the bar diameter, or equivalent bar diameter for bundled bars, unless the aggregate size is over 32 mm.

Minimum cover for durability

The recommendations for durability in Eurocode 2 are based on BS EN 206–112. In the UK the requirements of BS EN 206 –1 are applied through the complementary standard BS 8500.

Table 10

Minimum dimensions and axis distances for reinforced concrete slabs

Design for fire resistance

Eurocode 2 Part 1–2: *Structural fire design*⁸, gives several methods for determining the fire resistance of concrete elements; further guidance can be obtained from specialist literature. Design for fire resistance may still be carried out by referring to tables to determine the minimum cover and dimensions for various elements, as set out below.

Rather than giving the minimum cover, the tabular method is based on nominal axis distance, a (see Figure 4). This is the distance from the centre of the main reinforcing bar to the surface of the member. It is a nominal (not minimum) dimension. The designer should ensure that

 $a \ge c_{\text{nom}} + \phi_{\text{link}} + \phi_{\text{bar}} / 2.$

There are three standard fire exposure conditions that may be satisfied:

- R Mechanical resistance for load bearing
- E Integrity of separation
- I Insulation

Tables 9 and 10 give the minimum dimensions for columns and slabs to meet the above conditions. Further information is given in Eurocode 2 and subsequent guides in this series, including design limitations and data for walls and beams.

Standard		Minimum dim	Minimum dimensions (mm)								
fire		Possible comb	ssible combinations of a and b _{min} where a is the average axis distance and b _{min} is the width of the rib								
resistance		One-way	Two-way span	ning slab	Flat slab	lat slab Ribs in a two-way spanning ribbed slab					
	spanning slab $l_y/l_x \le 1.5$ $1.5 < l_y/l_x \le 2$		panning slab $l_y/l_x \le 1.5$ $1.5 < l_y/l_x \le 2$								
REI 60	h _s = a =	80 20	80 10	80 15	180 15	b _{min} = a =	100 25	120 15	≥200 10		
REI 120	h ₅ = a =	120 40	120 20	120 25	200 35	b _{min} = a =	160 45	190 40	≥300 30		
REI 240	h _s = a =	175 65	175 40	175 50	200 50	b _{min} = a =	450 70	700 60	—		
Mada											

Note

Refer to BS EN 1992-1-2 for design limitations.

[†] Method B indicates 600/70 for R 240 and μ_{fi} = 0.7 and may be used. See EN 1992–1–2 Table 5.2b.

Table 8

Selected^a recommendations for normal-weight reinforced concrete quality for combined exposure classes and cover to reinforcement for at least a 50-year intended working life and 20 mm maximum aggregate size

Exposure conditions (Refer to Table 7)		Cement / combination designations ^b				o, minimum esignated co						
Typical example	Primary	Secondary		Nominal c	over to reinf	forcement ^d						
				15 +⊿ c _{dev}	20 +⊿ c _{dev}	25 +⊿ c _{dav}	30 +⊿ c _{dev}	35 +⊿ c _{dev}	40 +⊿ c _{dev}	45 +⊿c _{dev}	50 +⊿ c _{de}	
Internal mass concrete	хо		All	Recommen	ded that this	exposure is n	ot applied to	reinforced co	oncrete			
Internal elements (except humid locations)	XC1		All	C20/25, 0.70, 240 or RC25	<<<	<<<	<<<	<<<	<<<	<<<	<<<	
Buried concrete in AC-1 ground conditions ^e	XC2	AC-1	All	—	—	C25/30, 0.65, 260 or RC30	<<<	<<<	<<<	<<<	<<<	
Vertical surface protected from direct rainfall			All except IVB	—	C40/50, 0.45, 340 or RC50	C32/40, 0.55, 300 or RC40	C28/35, 0.60, 280 or RC35	C25/30, 0.65, 260 or RC30	<<<	<<<	<<<	
Exposed vertical surfaces	ХСЗ	XF1	All except IVB	—	C40/50, 0.45, 340 or RC50	C32/40, 0.55, 300 or RC40	C28/35, 0.60, 280 or RC35	<<<	<<<	<<<	<<<	
Exposed horizontal	& XC4	XF3	All except IVB	—	C40/50, 0.45, 340 ^f or RC50XF ^f	<<<	<<<	<<<	<<<	<<<	<<<	
surfaces		XF3 (air entrained)	All except IVB	<u> </u>	—	C32/40, 0.55, 300 plus air ^{f,} g	C28/35, 0.60, 280 plus airf g or PAV2	C25/30, 0.60, 280 plus airf,g,h or PAV1	<<<	<<<	<<<	
Car park elements subject to airborne chlorides only	XD1	XC3/4	All except IVB		—	C40/50, 0.45, 360	C32/40, 0.55, 320	C28/35, 0.60, 300	<<<	<<<	<<<	
			IIB-V, IIIA			<u> </u>			C35/45, 0.40, 380	C32/40, 0.45, 360	C28/35, 0.50, 340	
Car park decks and areas subject to de-icing spray		XC3/4	CEM I, IIA, IIB-S, SRPC	·		—	—		C45/55, 0.35, 380	C40/50, 0.40, 380	C35/45, 0.45, 360	
			IIIB				—		C32/40, 0.40, 380	C28/35, 0.45, 360	C25/30, 0.50, 340	
			IIB-V, IIIA			—	—	—	C35/45, 0.40, 380	C32/40, 0.45, 360	C32/40, 0.50, 340	
Vertical elements subject to de-icing spray and freezing	XD3	XC3/4 +XF2	CEM I, IIA, IIB-S, SRPC		·		—	-	C45/55, 0.35, 380	C40/50, 0.40, 380	C35/45, 0.45, 360	
Fray and modeling			IIIB				—	· ·	C32/40, 0.40, 380	C32/40 0.45, 360	C32/40, 0.50, 340	
Car park decks, ramps and external		XC3/4 +XF4	CEM I, IIA, IIB-S, SRPC				—		C45/55, 0.35, 380f	C40/50, 0.40, 380 f	<<<	
areas subject to reezing and de-icing salts		XC3/4 +XF4 (air entrained)	IIIB	—	—	—	—	—	—	C28/35 0.45, 360 ^{f,} g	C28/35, 0.50, 340fg	
	IIB-V	IIB-V, IIIA				C45/55, 0.35, 380	C35/45, 0.45, 360	C32/40, 0.50, 340	<<<	<<<		
Exposed vertical surfaces near coast	XS1	XC3/4 +XF2	CEM I, IIA, IIB-S, SRPC		. <u> </u>		C50/60, 0.35, 380	C40/50, 0.45, 360	C35/45, 0.50, 340	<<<	<<<	
	721		IIIB			<u> </u>	C35/45, 0.40, 380	C32/40, 0.50, 340	C32/40, 0.55, 320	<<<	<<<	
Exposed horizontal surfaces near coast		XC3/4 +XF4	CEM I, IIA, IIB-S, SRPC				C50/60, 0.35, 380 ^f	C40/50, 0.45, 360 ^f	<<<	<<<	<<<	

Key

 $\begin{array}{l} \textbf{d} \hspace{0.2cm} \varDelta \hspace{0.2cm} c_{dev} \hspace{0.2cm} \text{is an allowance for deviations.} \\ \textbf{e} \hspace{0.2cm} \text{For sections less than 140 mm thick refer to BS 8500.} \end{array}$

a This table comprises a selection of common exposure class combinations. Requirements for other sets of exposure classes eg XD2, XS2 and XS3 should be derived from BS 8500-1: 2002, Annex A.

ld be **f** Freeze/thaw resisting aggregates should be specified. **g** Air entrained concrete is required.

h This option may not be suitable for areas subject to

b See BS 8500-2, Table 1. (CEM I is Portland cement, IIA to IVB are cement combinations.)
 c For prestressed concrete the minimum strength class should be C28/35.

This option may not be suitable for areas subject severe abrasion.

Not recommended

<<<

Indicates that concrete quality in cell to the left should not be reduced

Stability and imperfections

The effects of geometric imperfections should be considered in combination with the effects of wind loads (i.e. not as an alternative load combination). For global analysis, the imperfections may be represented by an inclination θ .

$\theta_{\rm l} = (\frac{1}{200}) \times a_{\rm h} \times a_{\rm m}$

where

 $a_{\rm m}$

 $(2/\sqrt{I})$, to be taken as not less than 2/3 nor $a_{\rm h}$ greater than 1.0

 $[0.5 (1 + 1/m)]^{0.5}$ =

/ is the height of the building in metres

m is the number of vertical members contributing to the horizontal force in the bracing system.

The effect of the inclination may be represented by transverse forces at each level and included in the analysis with other actions (see Figure 5):

Effect on bracing system: $Hi = \theta_i (N_b - N_a)$ Effect on floor diaphragm: $Hi = \theta_i (N_b + N_a)/2$ Effect on roof diaphragm: $Hi = \theta_i N_a$ where $N_{\rm a}$ and $N_{\rm b}$ are longitudinal forces contributing to $H_{\rm i}$.

In most cases, an allowance for imperfections is made in the partial factors used in the design of elements. However for columns, the effect of imperfections, which is similar in principle to the above, must be considered (see How to design concrete structures using Eurocode 2: Columns⁹).

Table 11 Maximum bar size or spacing to limit crack width

Steel	$w_{\rm max} = 0.4$	hmm		w _{ma} = 0.3 mm		
stress (♂s)MPa	Maximum bar size (mm)		Maximum bar spacing (mm)	Maximum bar size (mm)		Maximum bar spacing (mm)
160	40		300	32		300
200	32	OR	300	25	OR	250
240	20		250	16		200
280	16		200	12		150
320	12		150	10		100
360	10		100	8		50

Note

The steel stress may be estimated from the expression below (or see Figure 6):

fyk m A_{s,req} $\sigma_{s} =$

γms n As,prov δ

where

fyk is the characteristic reinforcement yield stress

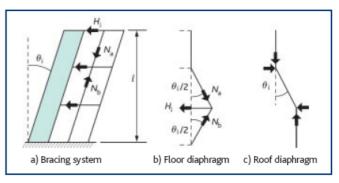
 $\gamma_{\rm ms}$ is the partial factor for reinforcing steel

m is the total load from quasi-permanent combination

n is the total load from ULS combination

As, reg is the area of reinforcement at the ULS

As provided area of reinforcement provided


 δ is the ratio of redistributed moment to elastic moment

Crack control

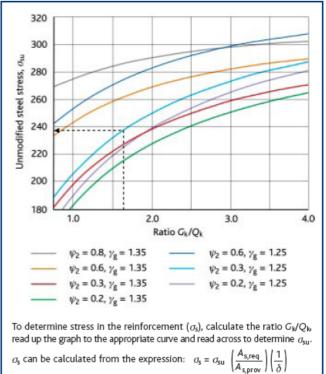

Crack widths should be limited to ensure appearance and durability are satisfactory. In the absence of specific durability requirements (e.g. water tightness) the crack widths in reinforced members may be limited to 0.3 mm in all exposure classes under the quasi-permanent combination. In the absence of requirements for appearance, this limit may be relaxed (to say 0.4 mm) for exposure classes X0 and XC1 (refer to Table 7). The theoretical size of the crack can be calculated using the expressions given in Cl 7.3.4 from Eurocode 2-1-1 or from the 'deemed to satisfy' requirements that can be obtained from Table 11, which is based on tables 7.2N and 7.3N of the Eurocode. The limits apply to either the bar size or the bar spacing, not both.

Figure 5

Figure 6 Determination of steel stress for crack width control

References

- 1 Eurocode 2: Design of concrete structures. BSI (4 parts).
- 2 NARAYANAN, R S & BROOKER, O. How to design concrete structures using Eurocode 2: Introduction to Eurocodes (TCC/03/16). The Concrete Centre, 2005.
- 3 EN 1991, Eurocode: Basis of structural design. 2002.
- 4 EN 1991, Eurocode 1: Actions on structures. (10 parts).
- 5 EN 1990, Eurocode 1: Actions on structures Part 1–1: General actions Densities, self-weight, imposed loads for buildings2002.
- 6 EN 10080: Steel for the reinforcement of concrete Weldable reinforcing steel General. 2005.
- 7 EN 206–1: Concrete Part: Specification, performance, production and conformity. 2000.
- 8 EN 1992–1–2, Eurocode 2: Design of concrete structures. General rules structural fire design, BSI, 2004.
- 9 MOSS, R M & BROOKER, O. How to design concrete structures using Eurocode 2: Columns, (TCC/03/20). The Concrete Centre, 2006.

Additional references for precast construction

- 1. EN 13369-Common rules for precast concrete products
- 2. NARAYANAN, RS Precast Eurocode 2 Design Manual. British precast, 2006

Further guidance and advice

- Guides in this series cover: Introduction to Eurocodes, Getting started, Slabs, Beams, Columns, Foundations, Flat slabs and Deflection. For free downloads, details of other publications and more information on Eurocode 2 visit www.eurocode2.info
- This guide is taken from The Concrete Centre's publication, How to design concrete structures using Eurocode 2 (Ref.CCIP-006)
- For information on all the new Eurocodes visit <u>www.eurocodes.co.uk</u>

Acknowledgements

This guide was originally published by BCA and The Concrete Centre in the UK. The author of the original publication was O Brooker BEng, Ceng, MICE, MIStructE.

Tables & Charts: Word versions (corrected text highlighted in green)

Table 1 Indicative design working life

Design life (years)	Examples
10	Temporary structures
10-25	Replaceable structural parts
15-30	Agricultural and similar structures
50	Buildings and other common structures
100	Monumental buildings, bridges and other civil engineering
	structures.

Table 2 Selected bulk density of materials (from Eurocode 1, Part 1-1)

Material	Bulk density (kN/m ³)
Normal weight concrete	24.0
Reinforced normal weight concrete	25.0
Wet normal weight reinforced concrete	26.0

Table 3 Selected imposed loads for buildings (recommended values in EN 1991-1-1)

Category	Example use	$q_{\rm k}$ (kN/m ²)	<i>Q</i> _k (kN)
Α	Floors	2.0	2.0
Α	Stairs	2.0	2.0
Α	Balconies in single family dwelling units	2.5	2.0
В	Office areas	3.0	4.5
C5	Areas susceptible to large crowds (e.g.) in buildings for public events like concert halls, sports halls including stands, terraces and access areas and railway platforms	5.0	4.5
D1	Areas in general retail shops	4.0	4.0
D2	Areas in department stores	5.0	7.0
E1	Areas of storage use including storage of books and other documents	7.5	7.0
F	Gross vehicle weight \leq 30 kN	2.5	20.0

Table 4 Selected concrete properties based on Table 3.1 of EN 1992- 1-1

Symbol	Description	Prop	erties									
f _{ck} (MPa)	Characteristic cylinder strength	12	16	20	25	30	35	40	45	50	28 ^a	32 ^a
f _{ck,cube} (MPa)	Characteristic cube strength	15	20	25	30	37	45	50	55	60	35	40
f _{ctm} (MPa)	Mean tensile strength	1.6	1.9	2.2	2.6	2.9	3.2	3.5	3.8	4.1	2.8	3.0
$E_{\rm cm}^{b}$ (GPa)	Secant modulus of elasticity	27	29	30	31	33	34	35	36	37	32	34
Kev	• •						•					•

Кеу

a Concrete class not cited in Table 3.1, EN 1992- 1-1

b Mean secant modulus of elasticity at 28 days for concrete with quartzite aggregates. For concretes with other aggregates refer to Cl 3.1.3 (2) of EN 1992-1-1

Table 5 Characteristic tensile properties of reinforcement

Α	В	С
400 - 600	400 - 600	400 - 600
≥ 1.05	≥ 1.08	≥ 1.15 < 1.35
≥ 2.5	≥ 5.0	≥ 7.5
<u>.</u>		
EN 10080 ¹⁰ .		
	≥ 1.05 ≥ 2.5	$\geq 1.05 \geq 1.08$ $\geq 2.5 \geq 5.0$

Table 6 Bending moment and shear coefficients for beams

	Moment	Shear
Outer support	25% of span moment	0.45 (<i>G</i> + <i>Q</i>)
Near middle of end span	0.090 G/ + 0.100 Q/	
At first interior support	-0.094 (<i>G</i> + <i>Q</i>)/	0.63 $(G + Q)^{a}$
At middle of interior spans	0.066 <i>GI</i> + 0.086 <i>QI</i>	
At interior supports	-0.075 (<i>G</i> + <i>Q</i>)/	0.50 (<i>G</i> + <i>Q</i>)
Key a 0.55 ($G + Q$) may be used ad Notes: 1 Redistribution of support mo 2 Applicable to 3 or more span 3 Minimum span \ge 0.85 longest 4 / is the effective length, G is	ments by 15% has been inc s only and where $Q_k \leq G_k$. t span. the total of the ULS perma	luded.

total of the ULS variable actions.

Table 7 Exposure Classes (in accordance with EN 206-1)

Class	Description
	of corrosion or attack
XO	For concrete without reinforcement or embedded metal
	where there is no significant freeze/thaw, abrasion or
	chemical attack
Corrosio	n induced by carbonation
XC1	Dry or permanently wet
XC2	Wet, rarely dry
XC3/4	Moderate humidity or cyclic wet and dry
Corrosio	n induced by chlorides other than from seawater
XD1	Moderate humidity
XD2	Wet, rarely dry
XD3	Cyclic wet and dry
Corrosio	n induced by chlorides from seawater
XS1	Exposed to airborne salt but not in direct contact with sea
	water
XS2	Permanently submerged
XS3	Tidal, splash and spray zones
	thaw with or without de-icing agents
XF1	Moderate water saturation without de-icing agent
XF2	Moderate water saturation with de-icing agent
XF3	High water saturation without de-icing agent
XF4	High water saturation with de-icing agent or sea water
Chemica	
XA1	Slightly aggressive chemical environment (EN 206 -1, Table 2)
XA2	Moderately aggressive chemical environment (EN 206 -1,
	Table 2)
XA3	Highly aggressive chemical environment (EN 206 -1, Table 2)

Table 8Selected^a recommendations for normal-weight reinforced concrete quality for combined exposure classes
and cover to reinforcement for at least a 50-year intended working life and 20 mm maximum aggregate size.Note: Any country adapting this Table should substitute data applicable in the country.

Exposure cor	nditions		Cement/ combination designations ^b	equivalent o	lesignated co	m w/c ratio, oncrete (whe			bination cor	ntent (kg/m³)	or
Typical	Primary	Secondary	designations	Nominal cov	er to reinfor						
example		····· ,		15 + ⊿C _{dev}	20 + ⊿C _{dev}	25 + <i>DC</i> dev	30 + ⊿C _{dev}	35 + ⊿C _{dev}	40 + <i>DC</i> _{dev}	45 + <i>DC</i> dev	50 + <i>∆C</i> _{dev}
Internal mass concrete	xo		All	Recommend	Recommended that this exposure is not applied to reinforced				ed concrete		
Internal elements (except humid locations)	XC1		All	C20/25, 0.70, 240 or RC20/25	<<<	<<<	<<<	<<<	<<<	<<<	<<<
Buried concrete in AC-1 ground conditions ^e	XC2	AC-1	All			C25/30, 0.65, 260 or RC25/30	<<<	<<<	<<<	<<<	<<<
Vertical surface protected from direct rainfall		_	All except IVB	_		C30/37, 0.55, 300 or RC30/37	C28/35, 0.60, 280 or RC28/35	C25/30, 0.65, 260 or RC25/30	<<<	<<<	<<<
Exposed vertical surfaces	XC3 &	XF1	All except IVB	_		C30/37, 0.55, 300 or RC30/37	C28/35, 0.60, 280 or RC28/35	<<<	<<<	<<<	<<<
Exposed horizontal	XC4	XF3	All except IVB	_	C40/50, 0.45, 340 ^g or RC40/50XF	<<<	<<<	<<<	<<<	<<<	<<<
surfaces		XF3 (air entrained)	All except IVB	_		C32/40, 0.55, 300 plus air ^{g,h}	C28/35, 0.60, 280 plus air ^{g,h} or PAV2	C25/30, 0.60, 280 plus air ^{g,h,j} or PAV1	<<<	<<<	<<<
Elements subject to airborne chlorides	XD1 ^f	_	All	_		C40/50, 0.45, 360	C32/40, 0.55, 320	C28/35, 0.60, 300	<<<	<<<	<<<
Car park			IIB-V, IIIA						C35/45,	C32/40,	C28/35,
decks and areas			CEM I, IIA,						0.40, 380 See BS	0.45, 360 C40/50,	0.50, 340 C35/45,
subject to de-icing spray			IIB-S, SRPC IIIB, IVB-V				_		8500 C32/40, 0.40, 380	0.40, 380 C28/35, 0.45, 360	0.45, 360 C25/30, 0.50, 340
Vertical			IIB-V, IIIA			_		_	C35/45, 0.40, 380	C32/40,	C32/40, 0.50, 340
elements subject to		XF2	CEM I, IIA, IIB-S, SRPC		_		_		See BS 8500	C40/50, 0.40, 380	C35/45, 0.45, 360
de-icing spray and freezing	XD3 ^f		IIIB, IVB-V	_		_	_	_	C32/40, 0.40, 380	C32/40, 0.45, 360	C32/40, 0.50, 340
Car park decks, ramps and		XF4	CEM I, IIA, IIB-S, SRPC						See BS 8500	C40/50, 0.40, 380 ^g	<<<
external areas subject to freezing and de- icing salts		XF4 (air entrained)	IIB-V, IIIA, IIIB				_		C28/35, 0.40, 380 ^{g,h}	C28/35, 0.45, 360 ^{g,h}	C28/35, 0.50, 340 ^{g,h}

Table 8 continued

Exposed		XF1	CEM I, IIA, IIB-S, SRPC				C35/45, 0.45, 360	C32/40, 0.50, 340	<<<	<<<
vertical surfaces	surfaces		IIB-V, IIIA	_	_		C32/40, 0.45, 360	· · · · · · · · · · · · · · · · · · ·	C25/30, 0.55, 320	<<<
near coast			IIIB			· · · · · · · · · · · · · · · · · · ·	C25/30, 0.50, 340	· · · · · · · · · · · · · · · · · · ·	C25/30, 0.55, 320	<<<
Exposed horizontal surfaces near coast		XF4	CEM I, IIA, IIB-S, SRPC				C40/50, 0.40, 380 ^g	<<<	<<<	<<<

Key

a This table comprises a selection of common exposure class combinations. Requirements for other sets of exposure classes, e.g. XD2, XS2 and XS3 should be derived from BS 8500-1: 2002. Annex A.

b See BS 8500-2, Table 1. (CEM I is Portland cement, IIA to IVB are cement combinations.)

c For prestressed concrete the minimum strength class should be C28/35.

d Δc_{dev} is an allowance for deviations.

 ${
m e}$ For sections less than 140 mm thick refer to BS 8500.

f Also adequate for exposure class XC3/4.

g Freeze/thaw resisting aggregates should be specified.

h Air entrained concrete is required.

j This option may not be suitable for areas subject to severe abrasion.

Not recommended

<<< Indicates that concrete quality in cell to the left should not be reduced

Table 9 Minimum column dimensions and axis distances for columns with rectangular or circular section - Method A

Standard fire resistance	Minimum dimensions (mm)					
	Column width (<i>b</i> _{min})/axis distance	e (a) of the main bars				
	Column exposed on more than	Exposed on one side				
	one side ($\mu_{fi} = 0.7$)	$(\mu_{\rm fi} = 0.7)$				
R 60	250/46	155/25				
	350/40					
R 120	350/57*	175/35				
	450/51*					
R 240	†	295/70				
Notes		·				

1 Refer to EN 1992-1-2 for design limitations.

 $2 \mu_{\rm fi}$ is the ratio of the design axial load under fire conditions to the design resistance of the

column at normal temperature conditions. Conservatively $\mu_{\rm fi}$ may be taken as 0.7.

* Minimum 8 bars

† Method B indicates 600/70 for R 240 and μ_{fi} = 0.7 and may be used. See EN 1992-1-2 Table 5.2b

Table 10 Minimum	dimensions and axi	s distances for	reinforced concrete slabs	
------------------	--------------------	-----------------	---------------------------	--

Standard fire		Minimum o	limensions(m	m)						
resistance		One-way	vay Two-way spanning slab		Flat	Ribs in two-way spanning ribbed slab				
		spanning	$I_{\rm v}/I_{\rm x} \le 1.5$	$1.5 < I_y / I_x \le 2$	slab	<i>b</i> _{min} is th	e width of	f the rib		
		slab	,	,						
REI 60	$h_{\rm s} =$	80	80	80	180	b _{min} =	100	20	≥200	
	<i>a</i> =	20	10	15	15	<i>a</i> =	25	15	10	
REI 120	$h_{\rm s} =$	120	120	120	200	b _{min} =	160	190	≥300	
	<i>a</i> =	40	20	25	35	<i>a</i> =	45	40	30	
REI 240	$h_{\rm s} =$	175	175	175	200	b _{min} =	450	700	-	
	a =	65	40	50	50	<i>a</i> =	70	60		
Note	•		•		·		-	-	•	
1 Defert	- EN 10	02 1 2 for	docign limita	tions						

1 Refer to EN 1992-1-2 for design limitations.

2 *a* is the axis distance (see Figure 4).

 $3 h_s$ is the slab thickness, including any non-combustible flooring.

Table 11 Maximum bar size or spacing to limit crack width

Steel stress	$W_{\text{max}} = 0.4 \text{ mm}$			$W_{\text{max}} = 0.3 \text{ mm}$					
(_s) MPa	Maximum bar		Maximum bar	Maximum bar		Maximum bar			
	size (mm)		spacing (mm)	size (mm)		spacing (mm)			
160	40		300	32		300			
200	32		300	25		250			
240	20	OR	250	16	OR	200			
280	16		200	12		150			
320	12		150	10		100			
360	10		100	8		50			
$\gamma_{\rm ms} n n$ where $f_{\rm vk} = 0$	4 _{s,prov} characteristic reir	forcer	nent vield stress						
γ_{ms} = partial factor for reinforcing steel m = total load from quasi-permanent combination n = total load from ULS combination $A_{s,req}$ = area of reinforcement at the ULS									
	= area of reinford								
	tio of redistribute								
	cracking is cause								
	ted for the chose			ative process will	be rec	quired.Bar			
spacing ru	le does not apply	to this	scondition						