
Eurocode 3 – Methodology, Principal Approaches and Algorithms

ADVANCED METHODS FOR CALCULATION OF STEEL STRUCTURES IN FIRE CONDITIONS

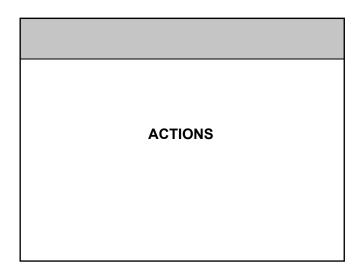
KULDEEP VIRDI

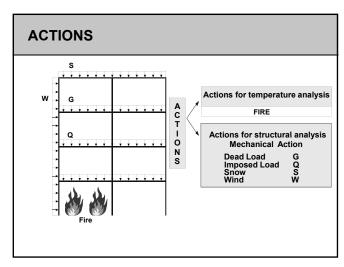
METHODOLOGIES IN EUROCODE 3 FOR ESTABLISHING FIRE RESISTANCE

MINIMUM FIRE RESISTANCE PERIODS

Whatever the strategy for checking the fire resistance, the fire resistance has to be provided for a certain duration.

This duration needs to be sufficient for


- allowing occupants to escape, and for
- allowing fire authorities to try and extinguish the fire


The requirements for minimum duration of fire resistance are specified in local building regulations.

MINIMUM FIRE RESISTANCE PERIODS

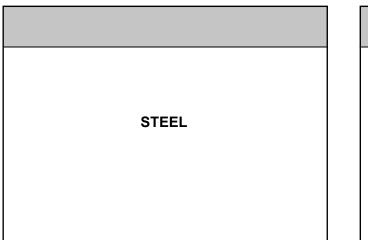
For example, UK Building Regulations have the following requirements.

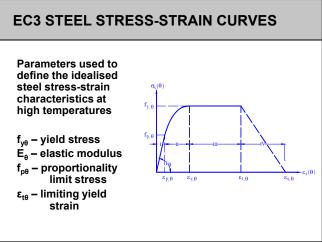
	Bas	sement		Above (Ground		
	> 10m	< 10m	< 5m	< 20m	< 30m	> 30m	
Offices: Non- sprinkler Sprinkler	90 60	60 60	30 30	60 30	90 60	NO! 120	↓ To storey <u>floor</u> level
Shops, Commercial Non- sprinkler Sprinkler	90 60	60 60	60 30	60 60	90 60	NO!	Times given in
Car Parks: Open-sided Other	90	60	15 30	15 60	15 90	60 120	min

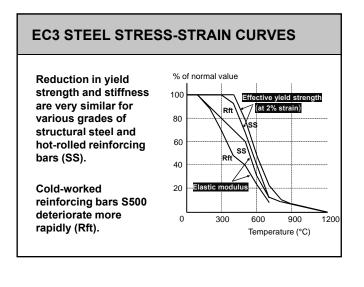
PARTIAL SAFETY FACTORS FOR LOAD RESISTANCE UNDER FIRE

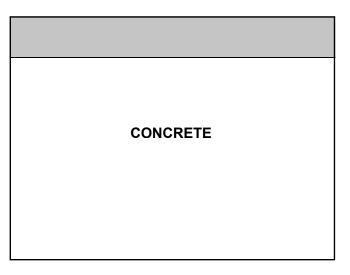
EC3 PARTIAL SAFETY FACTORS

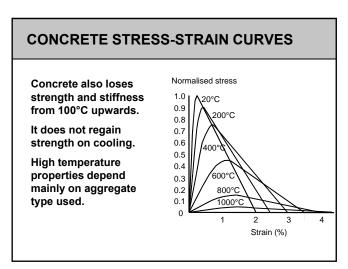
γ _G	= 1.35	Permanent loads;
YQ,1	= 1.50	Variable loads
In Fi	re limit stat	e
ŶGA	= 1.00	Permanent loads; accidental design situations
Ψ _{1.1}	= 0.50	Combination factor; variable loads

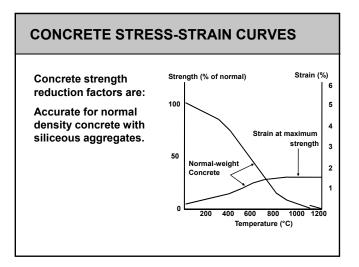

MATERIAL PROPERTIES IN FIRE

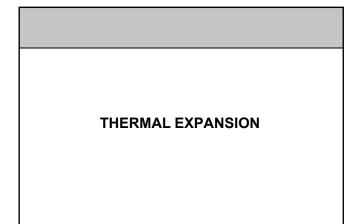

FIRE ENGINEERING CALCULATIONS

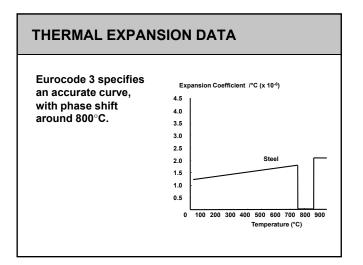

The key factor in calculating the resistance to loads under fire is the degradation of the strength of the materials at high temperature.

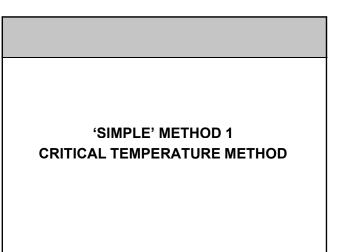

Both steel and concrete undergo degradation of strength.

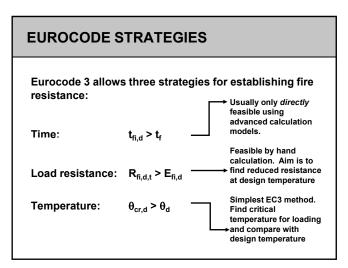

Experimentally obtained material stress-strain curves are used for this purpose. Eurocodes offer simplified models for stress-strain curves.

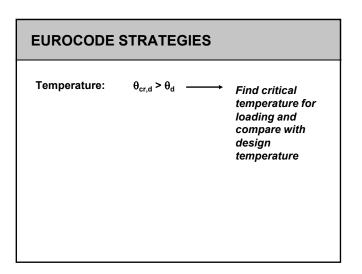







THERMAL EXPANSION


Thermal expansion is of concern only in Advanced Calculation Models


The basic effect of heating is thermal expansion.

Where, due to geometry or other factors, the expansion is constrained in some way, additional stresses are set up, which need to be added to mechanical stresses.

CRITICAL TEMPERATURE METHOD

[1] Calculate the loading on the structure at the fire limit state.

Analyse the structure to find moments and forces $E_{fi,d,t}$ at critical locations in the structure

This determines the 'Actions' on members

[2] Classify the section. The criterion is local buckling, which is characterised by the width/thickness ratio of elements

MEMBER CLASSIFICATION

For the following cases, the section classification used is the same as for ambient temperature.

- **Compression members**
- Simple beams supporting a concrete slab on the top flange
- All Class 3 and Class 4 sections

MEMBER CLASSIFICATION

The width/thickness ratios of flange and web elements should be less than the values shown in the table.

Element	Class 1	Class 2	Class 3	$\varepsilon = \frac{235}{2}$
Flange	c/t _f =10ε	c/t _f =11ɛ	c/t _f =15 <i>ɛ</i>	$z = \sqrt{f_y}$
Compressed web	d/t _w =72ɛ	d/t _w =83ɛ	d/t _w =124ɛ	
Web in bending	d/t _w =33ɛ	d/t _w =38ɛ	d/t _w =42ɛ	

MEMBER CLASSIFICATION

For the following cases, the section classification used for the fire limit state is different from that at ambient temperature.

Tension members Beams with exposure on all four sides

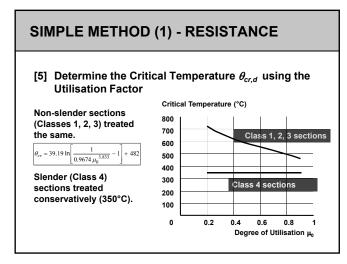
MEMBER CLASSIFICATION

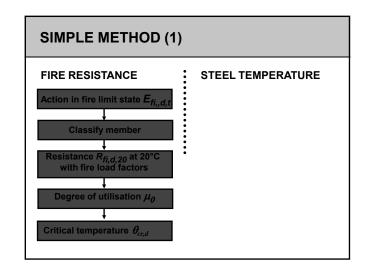
For these members, the width/thickness ratios of the flange and the web elements should be less than the values shown in the same table but with:

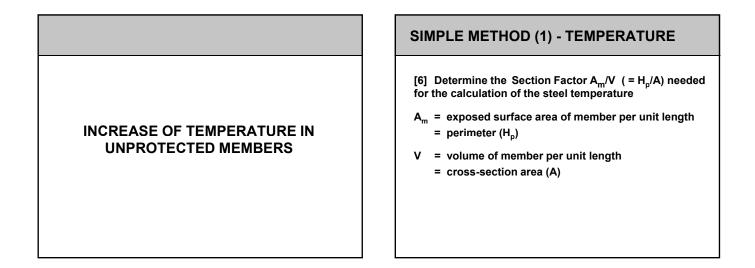
(Approximately)

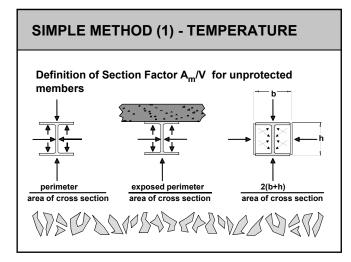
$$\sqrt{\frac{235}{f_y}\frac{k_{E,\theta}}{k_{y\theta}}} = 0.85\sqrt{\frac{235}{f_y}}$$

£ =


 $k_{E,\theta}$ = elastic modulus reduction factor for steel at temperature θ .


 $k_{v\theta}$ = yield strength reduction factor for steel at temperature θ .


SIMPLE METHOD (1) - RESISTANCE


- [3] Calculate the resistance of the cross-section at ambient temperature, but using the partial safety factors for the fire limit state, R_{fi.d.20}
- [4] Calculate Utilisation Factor $\mu_0 = \frac{E_{i_{i,d,t}}}{R_{i_{i,d,20}}}$

 $E_{fi,d,t}$ is the design loading of the member in fire, calculated in Step 1.

HEAT FLUX

The heat flux has two parts - one due to radiation and the other due to convection.

Heat flux

 $h_{net,d} = h_{net,r} + h_{net,c}$

HEAT FLUX - RADIATION

Heat flux due to radiation

$$h_{netr} = 5.67 \times 10^{-8} \Phi \varepsilon_{res} \left[(\theta_r + 273)^4 - (\theta_m + 273)^4 \right]$$

Φ = configuration factor
 (can be set to 1.0 in the absence of data)

 $\theta_r, \, \theta_m$ = environment and member surface temperatures

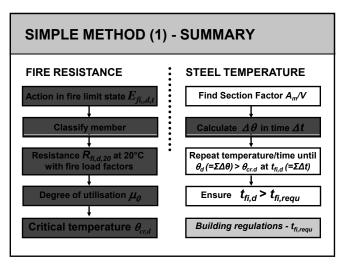
EMISSIVITY

- ϵ_{res} = resultant emissivity = $\epsilon_f \times \epsilon_m$ (can be taken as 0.5 in the absence of data)
- ε_f = emissivity of the fire compartment (can be taken as 0.8 in the absence of data)
- ε_f = emissivity of the steel surface (can be taken as 0.625 in the absence of data)

HEAT FLUX - CONVECTION

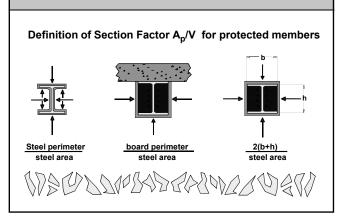
Heat flux due to convection

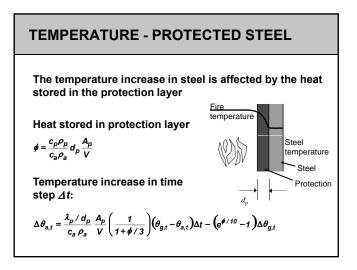
 $h_{net,c} = \alpha_c \left(\theta_r - \theta_m \right)$


 α_c = convective heat transfer coefficient (NA value)
 25W/m²°K for Standard or External Fire 50W/m²°K for Hydrocarbon Fire

SIMPLE METHOD (1) - TEMPERATURE

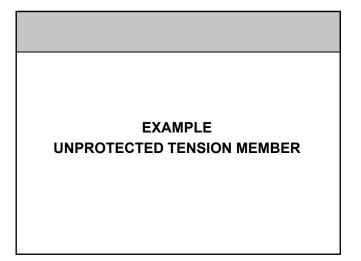
[8] In the initial time steps, clearly θ_r is less than the critical temperature $\theta_{cr,d}$

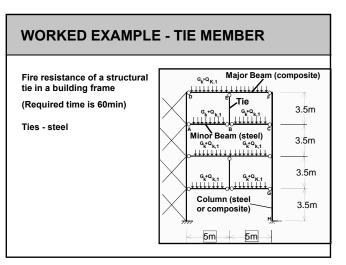

The time required $t_{fi,d}$ for the steel temperature to exceed the critical temperature is evaluated by repeating step [7]

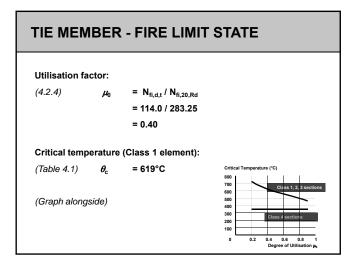

The time $t_{fi,d}$ is compared with time $t_{fi,req}$ specified in building regulations for fire safety. For safety, time $t_{fi,d}$ should, naturally, be greater than the time $t_{fi,req}$

INCREASE OF TEMPERATURE IN PROTECTED MEMBERS

PROTECTED STEEL






OTHER PARAMETERS

 $\boldsymbol{\theta}_g, \boldsymbol{\theta}_a$ = environment and member surface temperatures

- $c_p,\,\rho_p$ = specific heat and density of protection material
- d_p = thickness of protection material
- λ_p = thermal conductivity of protection material

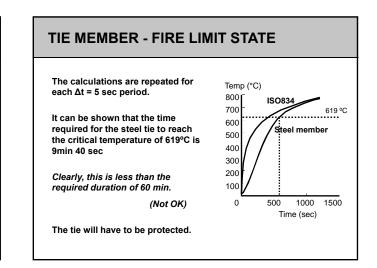
TIE MEMBER – STEP 2

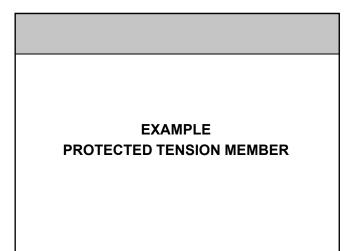
Summary of Second Step of Calculations

= 146.95 ° C for the room after 10 sec

= 20.92+1.57 = 22.49 °C

= 20.92 ° C for steel


Increase in temperature $\Delta \theta$ = 1.57 °C


New Steel Temperature, θ_m

 $\boldsymbol{\theta}_{m}$

θ,

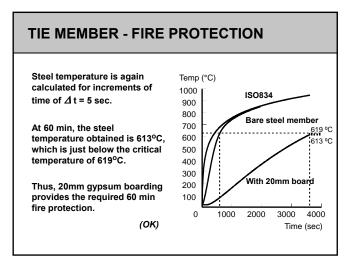
TIE MEMBER – STEP 1Summary of First Step of Calculations $\theta_m = 20.00 \degree C$ for steel, initially $\theta_r = 96.54 \degree C$ for the room after 5 secIncrease in temperature $\Delta \theta = 0.92 \degree C$ New Steel Temperature, $\theta_m = 20.00+0.92 = 20.92 \degree C$

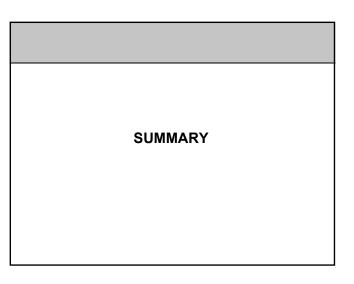
TIE MEMBER - FIRE PROTECTION

It is given that 60 minutes' fire protection required.

Protection against fire will be assessed for encasing it with 20mm thick Gypsum board.

 $\rho_{\rm n}$


Cp


ĺ,

Thermal properties of Gypsum are:

Density
Specific heat
Thermal conductivity
Section factor

. = 800 kg/m³ = 1700 J/kg°K = 0.2 W/m°K ' = 300.97 m⁻¹

SUMMARY SO FAR

Eurocode 3 allows three strategies for establishing fire safety of protected and unprotected steel structures.

The simple method, based on critical temperatures, has been described in detail.

METHOD 2 STRENGTH UNDER FIRE

EUROCODE STRATEGIES

Load resistance: $R_{f_{i,d,t}} > E_{f_{i,d}} \longrightarrow$ Feasible by hand

Feasible by hand calculation. Aim is to find reduced resistance at design temperature

UNRESTRAINED BEAMS

UNRESTRAINED BEAMS

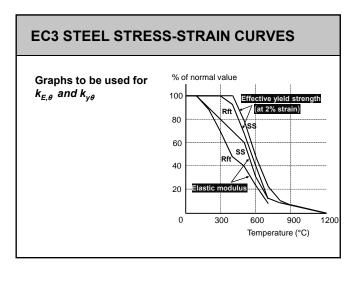
The lateral-torsional buckling moment capacity is checked for the maximum temperature $\theta_{a,com}$ at the compression flange:

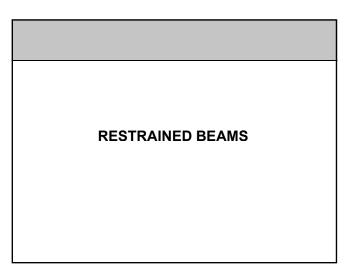
$$\boldsymbol{M}_{b,fi,t,Rd} = \boldsymbol{W}_{pl,y} \boldsymbol{k}_{y,\theta,com} \boldsymbol{f}_{y} \boldsymbol{\chi}_{LT.fi} \frac{1}{\boldsymbol{\gamma}_{MA}}$$

 $W_{pl,y}$ is the plastic section modulus of the cross-section (assuming Class 1 or Class 2 section).

The reduced yield strength of the compression flange is defined as $k_{y,\theta,com} f_y$ at $\theta_{a,com}$

UNRESTRAINED BEAMS


 $\chi_{LT,fi}$ is the lateral-torsional buckling strength reduction factor in fire design situation.


The strength reduction factor $\chi_{LT,fi}$ for flexural buckling is calculated using normalised slenderness :

$$\overline{\lambda}_{_{LT,\,\theta,com}} = \overline{\lambda}_{_{LT}} \sqrt{\boldsymbol{k}_{_{y,\theta,com}} \, / \, \boldsymbol{k}_{_{E,\theta,com}}}$$

Lateral-torsional buckling need not be considered if:

 $\overline{\lambda}_{LT,\,\theta,com}$ < 0.4

RESTRAINED BEAMS

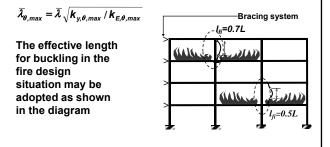
Restrained beams do not exhibit lateral-torsional buckling. Moment capacity is found by using:

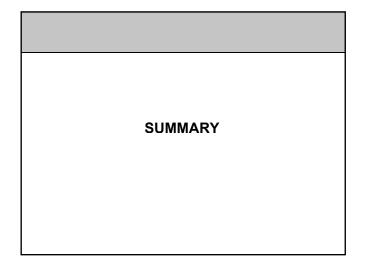
 $\chi_{LT.fi} = 1$

COLUMNS

COMPRESSION MEMBERS

This information applies to Class 1, 2 or 3 sections. The axial buckling resistance is checked for the maximum temperature $\theta_{a,com}$ in the steel:

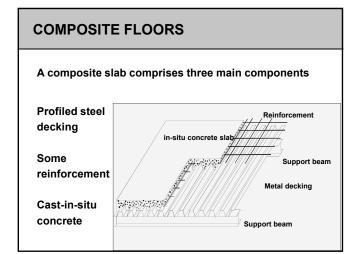

$$N_{b, fi, t, Rd} = A k_{y, \theta, max} f_{y} \chi_{fi} \frac{1}{\gamma_{M fi}}$$


 $\chi_{\rm fi}$ is the axial buckling strength reduction factor in fire design situation, obtained from curve 'c'.

The reduced yield strength of the compression flange is defined as $k_{y,\theta,com}f_y$ at $\theta_{a,com}$. The correction factor of 1.2 simply allows for uncertainties.

COMPRESSION MEMBERS

The strength reduction factor $\chi_{LT,\beta}$ for axial buckling is calculated using normalised slenderness :



EXAMPLE – COMPOSITE FLOOR

SUMMARY SO FAR

Eurocode 3 allows three strategies for establishing fire safety of protected and unprotected steel structures.

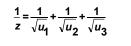
Formulae to be used for the 'simple' method based on calculation of strength for a given temperatures have been briefly mentioned.

COMPOSITE FLOORS

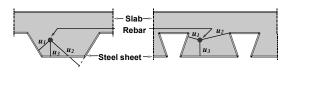
Composite floor slabs offer advantages over other systems

- speed and simplicity of construction
- safe working platform protecting workers below
- lighter than traditional concrete flooring
- often used with lightweight concrete, which further reduces the dead load

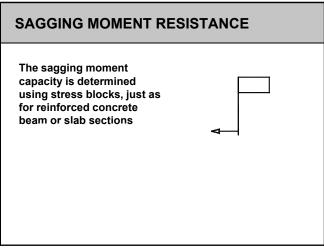
MOMENT CAPACITY METHOD


The temperature distribution through the beam at the appropriate fire resistance period is required.

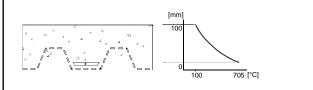
Using the temperature data, the modified strength properties of the materials in the section at these elevated temperatures are determined. Use is made of strength reduction factors.

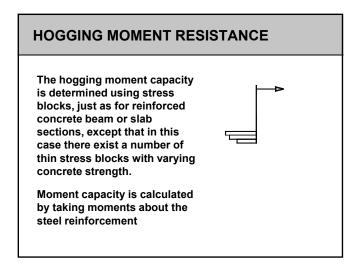

The reduced strengths of the materials are then used to determine the moment capacity of the member at critical sections.

STEEL TEMPERATURE

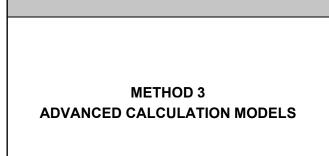

In EC4, the "effective distance parameter z" is calculated from the formula:

STRENGTH CRITERION "R"




NEGATIVE MOMENT OF RESISTANCE

This is calculated by Numerical Integration


The ribbed zone is divided into thin slices.

The temperature is determined at the centroid of each trapezium.

MOMENT CHECK – INTERNAL SPAN MOMENT CHECK – EXTERNAL SPAN For an internal span it For an external span it may be assumed that may be assumed that the span is continuous the span is continuous M_H over beams. over the internal beam only. Thus Thus $M_H + M_S \ge M_0$ M_sM₀ Where, M₀ is the free bending moment Where, M_0 is the free (factored for the fire bending moment limit state). (factored for the fire limit state).

ADVANCED CALCULATION MODELS

Eurocode 3 has one page and a half on this method, with no equations or formulae.

The principles to be followed are specified.

The user can choose their own method, as long as the fundamental behaviour is modelled leading to a reliable approximation of the expected behaviour under fire conditions.

Separate calculations for thermal and mechanical response are necessary.

ADVANCED CALCULATION MODELS

Any heating curve (fire) may be used.

Variation of thermal properties should be as given in the standard.

Thermal response should follow established theory of heat transfer.

Mechanical response should follow established theory of structural mechanics.

ADVANCED CALCULATION MODELS

Effect of mechanical actions, geometrical imperfections and thermal actions should all be combined.

Verification of calculation should be made on the basis of relevant test results.

OUTLINE

Advanced Calculation Models for Analysis for Temperature Distribution Analysis for Strength

Computer Modelling for Temperature Distribution Program TASEFplus

Computer Modelling for Strength Program COMPSEFplus

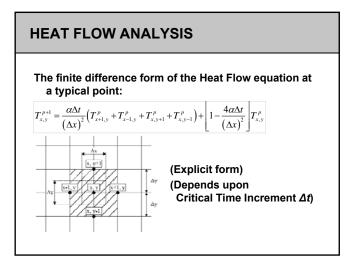
Conclusion

ADVANCED CALCULATION MODELS HEAT FLOW ANALYSIS

HEAT FLOW ANALYSIS

Consideration of heat conduction, convection and radiation

Use of accurate material properties

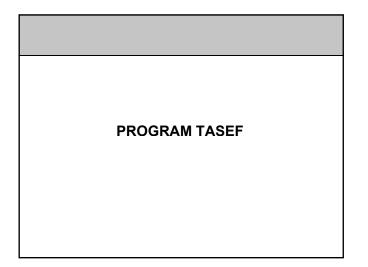

Appropriate modelling of boundary conditions

HEAT FLOW ANALYSIS

The basic heat conduction equation in two dimensions is:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{\rho c}{k} \frac{\partial T}{\partial t}$$

The equation can be solved by the Finite Element Method or by the Finite Difference Method



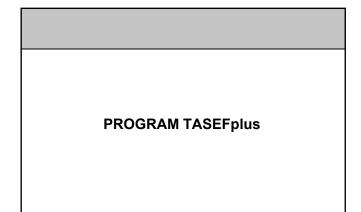
HEAT FLOW ANALYSIS

Several Computer programs are available for doing this task.

SAFIR VULCAN ANSYS ABAQUS

Plus many others

PROGRAM TASEF


- TASEF is a program written in FORTRAN and has a line-by-line data input. It was developed by UIf Wickström from Sweden.
- Program TASEF was first published in 1979 and was later enhanced in 1990.
- It handles heat flow in two-dimensional and axisymmetric cross-sections exposed to fire temperatures.

PROGRAM TASEF

- A variety of boundary conditions can be applied to surfaces of the section. These include not only surfaces subjected to heat flux as in a fire but also those in which there is no gain or loss of heat and there is no change in entropy (Adiabatic).
- Surfaces can also be without exposure to external heat.
- TASEF can also handle multiple fires in the same problem.

PROGRAM TASEF

- Material properties required are specific heat conductivity and specific heat capacity of the material.
- Latent heat of water is used to handle problems involving moist materials such as concrete.

PROGRAM TASEFplus

- TASEFplus, written in Visual Basic, is a pre-processor and a post-processor for TASEF. It was developed by the author while at City University London.
- TASEFplus includes material properties as specified in Eurocodes.
- The next few slides show the key features of TASEFplus. All the input can be completed with visual interface for data integrity.

PROGRAM TASEFplus

The Geometry is defined by specifying:

Outer dimensions, Sub-regions, which can be voids, and A few grid-lines for making the Finite Element mesh.

PROGRAM TASEFplus

(T) Moun Plangton	Dillou fu povrdeo	Ribs for Viet											
Proprieta and a set	Crafe Role	Fature h	11	2010	100	200	0.0	1121	1 H H	100	115		設定の 設備に 設備に 設備に
Inver Kabus Ausprendes problem	Daw Series	Sharkider	-	-	x	2	0	£.	1				100
Haman2 south-de			1.1	-	- 8	- 10	- 10	1	te -	100	112	-	жри
Haitse 100	Crailed Nodes	Bandains	1.1	3	я	10	4	73	×	99	112	ভ	10 L
Higherk-saldy-of Date Deard as	Ceathorne	Para Conserva Per		-	- 10	-	- 12	72	-	-	ur	-	-
(7) Sub-Regions Note +1+1			1 10	8	- 22	-25	- 12	78	-	*	14	-	880
1 0 0 000 1000 1000 1 0 0 000 000 000	Manid Santo	Casa E		-	-	64	9	10	8	×	-		281
EEEE	E	E		0	- 10	87	5	10	×	*	a	-	1 0.,
EEEE	E	-		-	8	e	-	~		54	σ	- 201	3453
;====	E	1	2	8	3	-	94	a	8	90	ĸ	-	385
(2) Grid Lines >Com line 1 2 2 4 10 12 104 1046 1007 10 11 12 17 14	3 8 7 18 99 91 15 16 0	1 3 3 1 10 (1 10 (0 10 10 10 2	-	14	,		-11	ļ	ļ	ļ		ļ	10,
11 22 23 N 13 23 23 23 23 23 23 23 23 23 23 23 23 23		1 1 1 1 1 1 1 1 1 1 1 1	(11) Yempere Time-skie tor cell Nadar u/Center	tou get		=	1	1542 1540			il and	liben	
Georetar Politica Scale I Castleen Presentari	biotal 10	Velical 10	<u>Contenens</u>	offer Lo	oribue du	cê.							

PROGRAM TASEFplus

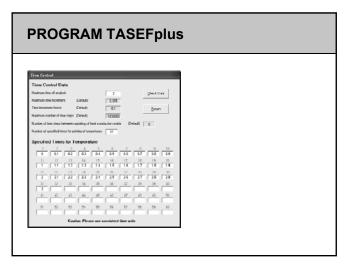
The Boundary Conditions are defined by specifying:

Node groups

For each Node Group:

The type of boundary condition that applies Fire with Heat Flux, Adiabatic (Fire without Heat Flux), and Ambient (No Fire).

PROGRAM TASEFplus


Internal voids can be specified.

For example, 'Hat Sections' used in Scandinavia can be modelled.

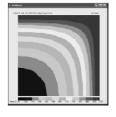
bund	ry Condition			_																			
Numbo	r of Node Grow	109 2 51	aded bove	will be auto	naical	r courie	d							0.0	8. Dw	a ned	Court	t Node	•				
_	Heat Plus	Temperature	Void	¢		,	Node	۰.	2	,								11	12	13	14	15	1.16
1.	Pie D 1	hell	Yord	05	1	1.33	13			33	12		78	57	104	117	130				<u> </u>		1
z	FielD 1	Teo ID	Void	05	1	1.38	12	160	168	197	165	16	164	763	162	161	160	159	158	157	-	T.	Т
2	FielD	Tio ID	Void			1		Г	Ē	Г	_		-	Ē			-	_		Ē	_	T	Т
k	No 6	Fee 10	Vel		_	-	6	Г	-	-	-	-	-	-	-	-		-	_	-	_	-	
5.	From 12	F#4-10	Visit			-	1	Г	г	Г	-	-	-	-	-	-	-	-	-	-	-	T	Т
R	Free D	R4-0	Visit			F	10	Г	Г	г	-	-	-	-	-		-	-	-	-	-	T.	Т
2	File ID	Family	Vel			-	0	Г	-	Г		-	_		_			_	_	Г	_	Ē	Ē
	Fee 10	Fee ID	Void			-	[B]	Г	r	F	_	-	-	—	-	-	-	-	-	г	-	T.	Т
2	Fee 10	Fee ID	Void		_	-	1	E	r	E	-	-	-	Ē	-	-	-	-	-	r	-	T.	T
18	Tel D	Family	Ved			-	10	Г	r		-	-	-	Ē			-		_	Ē	-	T.	T
11	FAR .	Fite ID	Yed		-	-	18	Г	-	-	-	-	-	-	-	-		-	-	-	-	-	-
12	Real C	FielD	Yes		_	-	1	-	-	-	_	-	-		-	_	_	_	_	-	-	-	-
For a	about boundary.	use Fate 10 x 11		Detail-up			n pouro	FLIM															

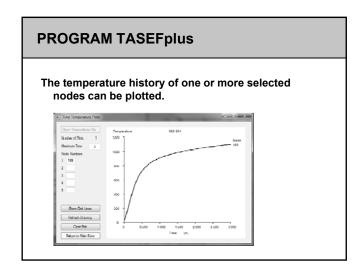
PROGRAM TASEFplus

- The temperature-time history specifies the times at which the calculations are output.
- In fact, the time domain has an explicit idealisation, so the calculations are carried out for a 'critical' time step for accuracy and convergence.

PROGRAM TASEFplus

All the instructions required are given on the front page of the program.


(The program also comes with a user manual)


ROGRAM TASEFplus	
•	
TASEEplus06 Main Form	
We: [CIDECT 158: 77.U57/T57 (SNy Tab 6.5 01)	
Neare select type of problem. Plane / Avirgementic about g-aris only Plane	
or a new publies, exter "Title" above and save (File/Seve) in a life name of your choice. Do not use the name funding dat	
o Edit an existing file use File/Open	
t is recommended to enter data following the menu from left to right. Hence, begin with Material Thermal Properties, account the information would be needed when ddrining the generator. Up to 10 materials can be defined within one works. J. Brave, of exercisis can be built as using divergence.	
The next part of delaweby relates to Line Temesulane - Time curves. Multiple lines can be defined. Lince consted, it is comble to save a fire curve in a literate of Free.	
Tore choices Executely on the Main invest and complete Steps (1)(4). Various assessment we terminated by pressing the Accepts or choices bottom. After completion of steps (1)(3), the user may unit to visualize the ruped by pressing the group/site Chaines bottom. Next, complete steps (4)(3), Step (5) and 7 (1) and be (4)(2)(2).	
anal part of data only relates to the duration of the and the times at which the temperature output is required.	
Droe all the data entry is complete, preco the URI Prepare input INe for TASEP button below. This serves the current data in the tote the and generates a new tile called TASEFONI data in the same sub-directory which includes the user Na. involuces Tubor, UV NUT entry with for more in the database total.	
Plane ensure that program TASDEVE13, exe (TASEF) exists in the same directory where the data input ReTASEFDAT, dat as been prevented. There prevers (P)(Thus TASEF) built on below. In the new diskgue box, simply prevs Toperf. TO NOT even any dise name in the datage as that	
Amessage box of Neare Wath appears. Allow a few seconds for the program to run. Clob UKN close the new message endows is on were the temperature plots, clob, on (20) PAL imperature Excitours butten betw. The Decemby screen well exceeds. Clorifor well Should This of this recent.	
lote: Buttono numbered (B 11) work successfully only after all data has been entered.	
BI Prepare input file for TASEF BI Run TASEF ITUP Plot Temperature Contours	

PROGRAM TASEFplus

The output is in the form of a fully annotated ext file.

In addition, colour contours of temperature distribution can be plotted.

ADVANCED CALCULATION MODELS

STRENGTH ANALYSIS FOR FIRE

STRENGTH ANALYSIS FOR FIRE

Use of accurate material properties, including thermal expansion, at high temperatures

For columns, second-order effects and imperfections need to be included

Requires computer software for any practical calculations.

Permitted by Eurocodes

STRENGTH ANALYSIS FOR FIRE

Advanced Calculation Models allow proper modelling of cross-section geometry, including benefits from concrete in floor slab acting as heat sink

Numerical analysis can be done by using the Finite Element Method or the Finite Difference Method

FINITE ELEMENT METHOD

Most general-purpose Finite Element Programs are not directly useable for strength analysis of structures exposed to fire.

There is a very small number of Finite Element programs specifically developed for fire analysis.

FINITE ELEMENT METHOD

FINITE ELEMENT METHOD

Most Finite Element programs have a steep learning curve.

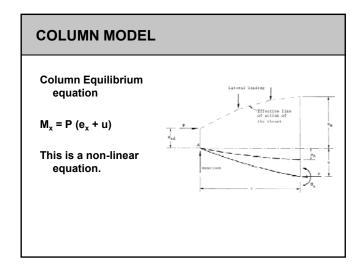
Practising engineers find the time required to create the data model for such programs unacceptably long.

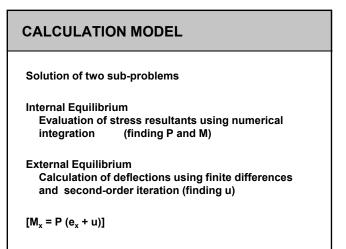
FINITE DIFFERENCE METHOD

Finite Difference based computer programs are only able to solve specific types of problems, for example, columns or plates.

For their specific application, such programs are fast and the learning curve is very short, principally because the amount of data required is not large.

FINITE DIFFERENCE METHOD


COLUMN ANALYSIS FOR FIRE


FINITE DIFFERENCE METHOD

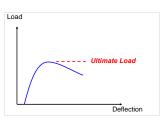
Finite Difference based computer programs are only able to solve specific types of problems, for example, columns or plates.

For their specific application, such programs are fast and the learning curve is very short, principally because the amount of data required is not large.

<section-header><section-header><text><text><text>

INTERNAL EQUILIBRIUM EX Stresses need to be integrated over appropriate areas, using non-linear temperature dependent stress-strain relations, to satisfy internal equilibrium Image: Comparison of the temperature of temperature

EXTERNAL EQUILIBRIUM


- The equilibrium deflected shape is determined by the finite difference method combined with the Newton-Raphson method of iteration.
- Thus, starting with an approximate solution { u ^k } for the deflections at the finite difference stations, a better solution is obtained by:

$$\{ u^{k+1} \} = \{ u^k \} - [I - K]^{-1} \{ u^k - U^k \}$$

[K] is determined numerically

STABILITY ANALYSIS

The method described is applied repeatedly, starting with a small applied load and solving for the deflected shape, and then increasing the load until no convergence for the deflected shape is obtainable.

The maximum load for which convergence is obtained is taken as the ultimate strength of the column.

PROGRAM COMPSEFplus

PROGRAM COMPSEFplus

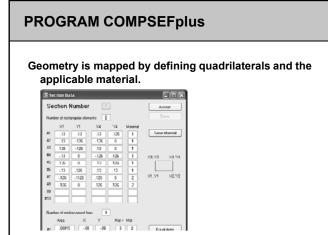
- COMPSEF is a program written also in FORTRAN. COMPSEFplus, written in Visual Basic, is a preprocessor for COMPSEF.
- Both programs were developed by the author while at City University London.
- The next few slides show the key features of the program. All the input can be completed in a very short time.

PROGRAM COMPSEFplus

- As for TASEFplus, all the instructions necessary to analyse a problem appear on the first screen.
 - WSLIptus Main GeneralControl MemberDate Naterials Cross-Section EBX Tale 0.0ECT 158: 77.U57/157
 - For a new problem, enter "Title" above and save (FRe/Save) in a file name of your choice. Do not use the names "SourceDista sou" or "Temp. dot. To Golf an employable use Fair/Dam.
 - It is recommended to enter data following the menu from left to right. Hence, begin with ritter of requence, the program will prough the over to return to the requence. Most form have an (Accept) Rutten, which should be used to come sul data validly checks. Where appropriate, the program checks that non-numerical data-has not been releved where numerical data must be entered.

 - Dice all the deta way is complete, press the c Trepner appath is the CDMTSETS halfso below. This sears the careful deta in the careful section of the same should be careful as the same s
 - Person remain lived paragram COMPREFEQ zure minist in the scare directory unlease the life COMPREFD.d.s was have prever ated. These (Run COMPREF) butten below. In the new dialogue box, simply press "Open", DD NOT enter any Fle name in the dialogue box.
 - Prepare input the for CUMPSET Run CUMPSET For Post

PROGRAM COMPSEFplus


The next screen defines what kind of analysis is being performed, whether it is uniaxial or biaxial bending.

A beam is a column with zero axial load.

PROGRAM COMPSEFplus

The subsequent screen defines the column length and few other parameters, which are often default values.

PROGRAM COMPSEFplus

Temperature output file from TASEF is read directly.

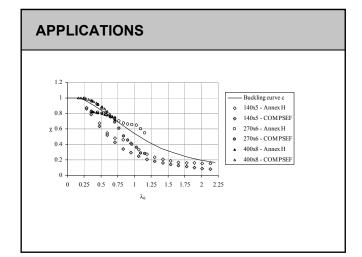
Look ye	🗇 OT COLECT 19	58 77.05/157	~	0200	
My Recent Documents	Cidect 178157. Cidect 178157. Committee dat Casefdat.dat Emuniti			Liptúne Les	M)
Decktop					
Documents					
aly Computer					
42	File game:	Temp dat		¥	<u>O</u> pen
My Network	Files of type:	TASEF Output File (".d.el			Carcel

PROGRAM COMPSEFplus

- Even though the geometry may be defined in different ways, full mapping of TASEF geometry to COMPSEF geometry is automatic.
- The output is fully annotated text file with deflections of the structure.

PROGRAM COMPSEFplus

Axial loa	ıd	= -5870	00.000000	
Time		-	49.050000	
Time inc	rement	=	0.050000	
Axial dia	splacement	=	1.378246	
X converg	gence norm	=	0.000000	
Y converg	gence norm	= -15	36.013848	
	0.000000			
2	0.000000	-1.	19	
15	0.00000	-101.	19	
16	0.000000	-102.	22	
17	0.000000	-101.	09	


APPLICATION TO CONCRETE FILLED STEEL TUBES

APPLICATIONS

If one looks at Eurocode 4, the design method for concrete filled tubes in Annex H is less than satisfactory.

This has been demonstrated by running COMPSEFplus.

Results from Annex H are higher than those given by Advanced Calculation Models. While this can mean economical designs using Annex U, it could also mean unsafe designs

REFERENCE

Nyman, S and Virdi, K S

Fire Response Of Concrete Filled Hollow Steel Sections EUROSTEEL 2011, August 31 - September 2, 2011, Budapest, Hungary

APPLICATION SHADOW EFFECT

SHADOW EFFECT

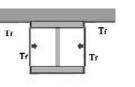
- In fire engineering, it is recognised that the radiative heat exchange in unprotected steel I-sections is reduced due to geometric effects.
- Most computations are based on the assumption that an I-section receives heat from convection and radiation uniformly over the entire surface area.
- Since radiation is directional, the reduction in the heat transferred actually occurs because flanges cast a 'shadow' on the rest of the section.

SHADOW EFFECT

Ignoring the shadow effect leads to conservative results.

However, one consequence is that a given design may thus become uneconomic.

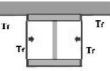
Based on some of the work of co-author Ulf Wickström, a much simplified approach appears in the fire engineering part of Eurocode 3 for steel structures.

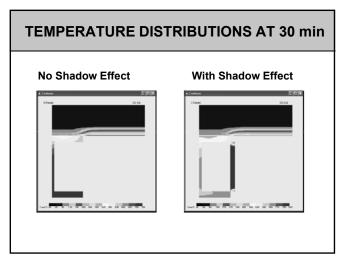

SHADOW EFFECT

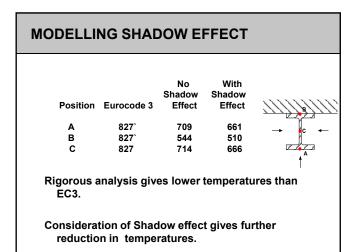
- As an example of the Advanced Calculation Model, temperature distributions in steel beams with or without considering the shadow effect are evaluated in a more rigorous manner.
- The effect of reduced temperatures obtained on the fire duration from TASEF is later evaluated using the finite difference based program COMPSEF.

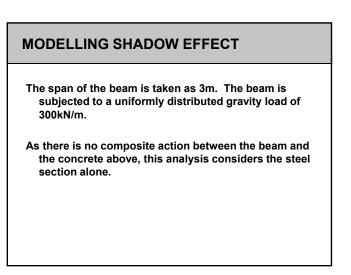
MODELLING SHADOW EFFECT

The shadow effect is considered by introducing an artificial boundary on the 'open' sides of the I section, that is, in the space between the flanges


The introduced boundaries follow the same fire curve as the rest of the section.


MODELLING SHADOW EFFECT


The key parameter of this artificial boundary is that it is specified to be adiabatic.


Thus, while following the fire curve, it does not cause radiation to pass through, thus introducing a shadow.

TEMPERATURE DISTRIBUTIONS AT 30 min Points selected for comparison of temperatures

MODELLING SHADOW EFFECT Results from COMPSEF are given below. No Shadow Effect 30.0min 35.4min This is a significant gain in fire duration for a bare steel section.

CONCLUSIONS

CONCLUSIONS

Eurocode 3 methodologies have been described.

- The basis of "Advanced Calculation Models" as permitted in Eurocodes was covered.
- Use of Advanced Calculation Models requires computer programs.

CONCLUSIONS

- Two programs one for heat transfer and one for mechanical response have been described.
- These programs are not 'general purpose', but dedicated to solving specific range of problems.
- Consequenly, what they can do, can be done with limited input, results are fast to obtain, and the 'learning curve' is not too steep.

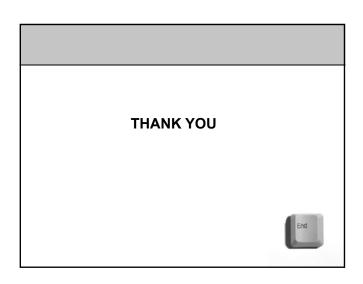
CONCLUSIONS

The programs can be used for design, research, and for teaching.

These programs have indeed been used in Fire Engineering modules for Master's programmes at City University and at Luleå University of Technology in Sweden.

CONCLUSIONS

One application has described how the shadow effect can be taken into account in determining the temperature distributions in a steel beam exposed to fire.


The reduction in temperatures obtained by an advanced calculation method, using the program TASEF, is first due to the transmission of heat into the concrete slab supported by the beam, a feature not taken into account in Eurocode 3.

CONCLUSIONS

Further significant reductions in temperatures are obtained by considering the shadow effect.

The resulting improved structural performance, calculated by the finite difference based program COMPSEF, is reflected in the increase in time to failure.

This difference could be significant in many practical situations.

